OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 10, Iss. 11 — Nov. 1, 1993
  • pp: 2100–2106

Analytical solution to the master equation for a quantized cavity mode

A. Mufti, H. A. Schmitt, A. B. Balantekin, and M. Sargent III  »View Author Affiliations

JOSA B, Vol. 10, Issue 11, pp. 2100-2106 (1993)

View Full Text Article

Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We solve analytically the master equation for a quantized cavity mode, finding the time-dependent reduced density operator. The formalism applies to both amplifiers and attenuator, permitting the results to be converted between them by introducing a temperature that can be negative. We obtain a quasi-probability distribution function similar to that obtained by Glauber [R. J. Glauber, ed., Quantum Optics (Academic, New York, 1969)] from our reduced density matrix and equate his parameters with the coefficients appearing in the master equatipn. We illustrate the formalism by calculating variances, expectation values, and photon statistics for the damped simple harmonic oscillator and the linear amplifier.

© 1993 Optical Society of America

A. Mufti, H. A. Schmitt, A. B. Balantekin, and M. Sargent III, "Analytical solution to the master equation for a quantized cavity mode," J. Opt. Soc. Am. B 10, 2100-2106 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology (Academic, New York, 1974).
  2. A. Ben-Shaul, Y. Haas, K. L. Kompa, and R. D. Levine, Lasers and Chemical Change (Springer-Verlag, Berlin, 1981).
  3. M. Sargent, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass., 1977).
  4. V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).
  5. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag, Berlin, 1990).
  6. R. J. Glauber, in Frontiers in Quantum Optics, E. R. Pike and S. Sarkar, eds. (Adam Hilger, Bristol, Mass., 1986).
  7. R. J. Glauber, in Quantum Optics, Proceedings of the International School of Physics, "Enrico Fermi," Course XLII, R. J. Glauber, ed. (Academic, New York, 1969).
  8. M. Sargent III, D. A. Holm, and M. S. Zubairy, Phys. Rev. A 31, 3112 (1985); D. A. Holm, M. Sargent III, and S. Stenholm, J. Opt. Soc. Am. B 2, 1456 (1985).
  9. B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076 (1967).
  10. A. B. Balantekin and N. Takigawa, Ann. Phys. (NY.) 160, 441 (1985).
  11. R. Gilmore and J. M. Yuan, J. Chem. Phys. 86, 130 (1987).
  12. F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972), use matrix representations to discuss Baker-Campbell-Hausdorf relations for the group SU(5).
  13. R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (Wiley, New York, 1974); K. T. Hecht, The Vector Coherent State Method and Its Application to Problems of Higher Symmetry (Springer-Verlag, Berlin, 1987).
  14. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, San Diego, 1980).
  15. D. R. Truax, Phys. Rev. D 31, 1988 (1985).
  16. K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969); 177, 1882 (1969).
  17. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973). See especially Section 6.5.
  18. J. E. Campbell, Proc. London Math. Soc. 28, 381 (1897); H. F. Baker, Proc. London Math. Soc. 34, 347 (1902); F. Hausdorff, Ber. Verh. Saechs. Akad. Wiss. Leipzig Math. Phys. K1. 58, 19 (1906).
  19. T. Schoendorff and H. Risken, Phys. Rev. A 41, 5147 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited