OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 10, Iss. 2 — Feb. 1, 1993
  • pp: 171–185

Photorefractive charge compensation at elevated temperatures and application to KNbO3

G. Montemezzani, M. Zgonik, and P. Giinter  »View Author Affiliations

JOSA B, Vol. 10, Issue 2, pp. 171-185 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (2057 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We treat the photorefractive effect in oxide crystals at elevated temperatures where charge compensation occurs in the absence of photoexcitation of the compensating species. These species can be either mobile ions or holes in the valence band. Two models are presented that take into account particularities of ion and hole transport. In the small-modulation approximation, solutions for the steady state and the dynamic evolution of the photorefractive effect are given. The maximum space-charge field Eq that can be reached depends on the effective number of electron traps in the crystal. However, in the steady state, while the component of the space-charge field that is due to electrons and the one that is due to the compensating carriers both approach the value Eq, an almost complete compensation of these two components occurs. The speed of compensation is slower for larger grating spacings than for smaller grating spacings and can be increased by applying an electric field. Applying an external electric field also produces a phase shift between the two gratings, therefore increasing the total space-charge field. Experiments performed in KNbO3 confirm the theoretical predictions and indicate that the ionic model is more appropriate for this crystal. Implications of these compensation effects for quasi-permanent hologram storage are discussed.

© 1993 Optical Society of America

Original Manuscript: March 6, 1992
Revised Manuscript: June 10, 1992
Published: February 1, 1993

G. Montemezzani, M. Zgonik, and P. Giinter, "Photorefractive charge compensation at elevated temperatures and application to KNbO3," J. Opt. Soc. Am. B 10, 171-185 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  2. D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, H. M. Smith, ed. (Springer-Verlag, Berlin, 1977), pp. 101–132. [CrossRef]
  3. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989). [CrossRef]
  4. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972). [CrossRef]
  5. J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974). [CrossRef] [PubMed]
  6. S. Redfield, L. Hesselink, “Enhanced nondestructive holographic readout in strontium barium niobate,” Opt. Lett. 13, 880–882 (1988). [CrossRef] [PubMed]
  7. D. Von der Linde, A. M. Glass, K. F. Rogers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  8. D. Von der Linde, A. M. Glass, K. F. Rogers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975). [CrossRef]
  9. V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  10. W. Meyer, P. Würfel, R. Munser, G. Miller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53171–180 (1979), [CrossRef]
  11. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  12. M. Carrascosa, F. Agulló-López, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990). [CrossRef]
  13. H. Vormann, G. Weber, S. Kapphan, M. Wöhlecke, “Hydrogen as origin of themal fixing of LiNbOe:Fe,” Solid State Commun. 57, 543–545 (1981). [CrossRef]
  14. G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3crystals,” Ferroelectrics 92, 281–287 (1989). [CrossRef]
  15. G. Montemezzani, P. Günter, “Thermal hologram fixing in pure and doped KNbO3crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990). [CrossRef]
  16. G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).
  17. J. P. Herriau, J.-P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986). [CrossRef]
  18. A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J.-P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20crystals,” Appl. Phys. Lett. 55, 713–715 (1989). [CrossRef]
  19. M. Miteva, L. Nikolova, “Oscillating behaviour of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20crystals,” Opt. Commun. 67, 192–194 (1988). [CrossRef]
  20. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, R. R. Dube, “Introduction, revelation, and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990). [CrossRef]
  21. D. Kirillov, J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991). [CrossRef] [PubMed]
  22. N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  23. N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  24. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II: Beam coupling, light amplification,” Ferroelectrics 22, 961–964 (1990). [CrossRef]
  25. I. Biaggio, M. Zgonik, P. Günter, “Build-up and dark decay of transient photorefractive gratings in reduced KNbO3,” Opt. Commun. 77, 312–317 (1990). [CrossRef]
  26. J. Mort, D. M. Pai, eds., Photoconductivity and Related Phenomena (Elsevier, Amsterdam, 1976).
  27. E. I. Bondarenko, V. A. Zagorulko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).
  28. N. V. Kukhtarev, G. E. Dogvalenko, V. N. Markov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A 33, 227–230 (1984). [CrossRef]
  29. G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986). [CrossRef]
  30. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990). [CrossRef]
  31. S. Zhivkova, M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990). [CrossRef]
  32. D. Fluck, P. Amrhein, P. Günter, “Photorefractive effect in crystals with a nonlinear recombination of charge carriers: theory and observation in KNbO3,” J. Opt. Soc. Am. B 8, 2196–2203 (1991). [CrossRef]
  33. E. V. Bursian, Ya. G. Girshberg, A. V. Ruzhnikov, “The correlation between optical absorption spectra, carrier mobility, and phase transition temperature in some ferroelectrics,” Phys. Status Solidi B 74, 689–693 (1976). [CrossRef]
  34. I. Biaggio, M. Zgonik, P. Günter, “Photorefractive effects induced by picosecond light pulses in reduced KNbO3,” J. Opt. Soc. Am. B 9, 1480–1487 (1992). [CrossRef]
  35. F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773–3780 (1989). [CrossRef]
  36. J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, “Comparison between holographic and transient-photocurrent measurements of electron mobility in photorefractive Bi12SiO20,” Phys. Rev. B 44, 1487–1491 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited