OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 10, Iss. 8 — Aug. 1, 1993
  • pp: 1447–1456

Linear- and nonlinear-optical properties of GaN thin films

J. Miragliotta, D. K. Wickenden, T. J. Kistenmacher, and W. A. Bryden  »View Author Affiliations

JOSA B, Vol. 10, Issue 8, pp. 1447-1456 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Results of a linear- and nonlinear-optical investigation of GaN thin films epitaxially deposited onto (0001)-oriented sapphire are reported. Wavelength- and angle-dependent linear transmission measurements were used to determine the thickness and the refractive index in the 500–1200-nm spectral region for a series of six GaN films. Analysis of angle-dependent, second-harmonic (SH) transmission profiles at 532 nm provided a quantitative evaluation of χ xzx ( 2 ) , χ zxx ( 2 ), and χ zzz ( 2 ) and a determination of the GaN lattice structure and tilt angle between the optical axis of the film and the surface normal of the sample. Dispersion effects between 500 nm and 1.064 μm prevented efficient SH production in individual GaN films that were greater than 2.5 μm in thickness. However, field calculations on a proposed multilayer GaN–sapphire structure observed a ninefold increase in the transmitted SH power as compared with a single GaN film.

© 1993 Optical Society of America

Original Manuscript: December 7, 1992
Published: August 1, 1993

J. Miragliotta, D. K. Wickenden, T. J. Kistenmacher, and W. A. Bryden, "Linear- and nonlinear-optical properties of GaN thin films," J. Opt. Soc. Am. B 10, 1447-1456 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Wickenden, T. J. Kistenmacher, W. A. Bryden, J. S. Morgan, A. Estes-Wickenden, “The effect of self-nucleation layers on the MOCVD growth of GaN on sapphire,” Mater. Res. Soc. Symp. Proc. 221, 167 (1991). [CrossRef]
  2. M. A. Khan, J. M. Van Hove, J. N. Kuznia, D. T. Olsen, “Reflective filters based on single crystal GaN/Alx GaN1−x N multilayers deposited using low pressure MOCVD,” Appl. Phys. Lett. 59, 2408 (1991). [CrossRef]
  3. J. S. Morgan, W. A. Bryden, T. J. Kistenmacher, S. A. Ecelberger, T. O. Poehler, “Single-phase aluminum nitride films by dc-magnetron sputtering,” J. Mater. Res. 5, 2677 (1990). [CrossRef]
  4. T. J. Kistenmacher, W. A. Bryden, J. S. Morgan, T. O. Poehler, “Characterization of rf-sputtered InN films and AlN/InN bilayers on (0001) sapphire by the x-ray precession method,” J. Appl. Phys. 68, 1541 (1990). [CrossRef]
  5. S. Strite, H. Morkoc, “GaN, AlN, and InN: a review,” J. Vac. Sci. Tech. B 10, 1238 (1992). [CrossRef]
  6. S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, “Hole compensation of p-type GaN films,” Jpn. J. Appl. Phys. 31, 107 (1992). [CrossRef]
  7. Y. Li, G. Eichmann, X. Luo, P. P. Ho, R. R. Alfano, “Noncollinear SHG-based ultrafast optical signal processing for optical digital computing,” Opt. Commun. 64, 322 (1987). [CrossRef]
  8. D. R. Ulrich, “Overview: nonlinear optical organics and devices,” in Organic Materials for Nonlinear Materials, R. A. Hann, D. Bloor, eds. (Royal Society of Chemistry, London, 1989), p. 241.
  9. G. I. Stegeman, “Nonlinear guided waves,” in Contemporary Nonlinear Optics, G. P. Agrawal, R. W. Boyd, eds. (Academic, San Diego, 1992), p. 1. [CrossRef]
  10. N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606 (1962). [CrossRef]
  11. J. Jerphagnon, S. K. Durtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667 (1970). [CrossRef]
  12. Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145 (1992). [CrossRef]
  13. Y. R. Shen, Principles of Nonlinear Optics, 1st ed. (Wiley, New York, 1984), Chap. 2.
  14. N. Bloembergen, Nonlinear Optics (Benjamin-Cummings, New York, 1965), Chap. 4.
  15. G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971). [CrossRef]
  16. R. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 1.
  17. B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7, 2600 (1973). [CrossRef]
  18. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass., 1981), Chap. 4.
  19. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21 (1962). [CrossRef]
  20. M. Choy, R. L. Byer, “Accurate second-order measurements of visible and infrared nonlinear of crystals,” Phys. Rev. B 14, 1693 (1976). [CrossRef]
  21. E. Ejder, Phys. Status Solidi A 6, 442 (1971). [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  23. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52, 1377 (1962). [CrossRef]
  24. B. F. Levine, “A new contribution to the nonlinear optical susceptibility arising from unequal atomic radii,” Phys. Rev. Lett. 25, 440 (1970). [CrossRef]
  25. B. F. Levine, “d-Electron effects on bond susceptibilities and ionicities,” Phys. Rev. B 7, 2591 (1973). [CrossRef]
  26. I. M. Catalano, A. Cingolani, M. Lugara, A. Minafra, “Nonlinear optical properties of GaN,” Opt. Commun. 23, 419 (1977). [CrossRef]
  27. T. Ishidate, K. Inoue, M. Aoki, “SHG of epitaxially-grown GaN crystal,” Jpn. J. Appl. Phys. 19, 1641 (1980). [CrossRef]
  28. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical matrix techniques,” J. Opt. Soc. Am. B 6, 910 (1989). [CrossRef]
  29. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: extension of optical transfer matrix approach to include anisotropic materials,” J. Opt. Soc. Am. B 8, 367 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited