OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 11, Iss. 2 — Feb. 1, 1994
  • pp: 269–276

Laser and spectroscopic properties of Sr5(PO4)3F:Yb

Laura D. DeLoach, Stephen A. Payne, Larry K. Smith, Wayne L. Kway, and William F. Krupke  »View Author Affiliations

JOSA B, Vol. 11, Issue 2, pp. 269-276 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sr5(PO4)3F (S-FAP) has been investigated as a new Yb-doped laser crystal belonging to the apatite structural family. The spectroscopy of the Yb3+ ion and the laser properties of the medium have been investigated. The maximum absorption cross section of Yb in S-FAP is 8.6 × 10−20 cm2, and the maximum emission cross section is 7.3 × 10−20 cm2. The measured emission lifetime of Yb3+ is 1.26 ms. An Yb:S-FAP laser has been demonstrated with a Ti:sapphire laser pump operating at 899 nm. The Yb:S-FAP laser was measured to have slope efficiencies as high as 71%. The spectroscopy and laser studies are reported, as well as certain thermal, mechanical, and optical properties.

© 1994 Optical Society of America

Laura D. DeLoach, Stephen A. Payne, Larry K. Smith, Wayne L. Kway, and William F. Krupke, "Laser and spectroscopic properties of Sr5[PO4]3F:Yb," J. Opt. Soc. Am. B 11, 269-276 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton, "GaAs:Si LED pumped Yb-doped YAG laser," Appl. Phys. Lett. 19, 11–13 (1971). [CrossRef]
  2. W. F. Krupke and L. L. Chase, "Ground-state depleted solid-state lasers: principles, characteristics and scaling," Opt. Quantum Electron. 22, S1–S22 (1990). [CrossRef]
  3. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089–1091 (1991). [CrossRef] [PubMed]
  4. R. M. Kolbas, N. G. Anderson, W. D. Laidig, Y. Sin, Y. C. Lo, K. Y. Hsieh, and Y. J. Yang, "Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers," IEEE Quantum Electron. 24, 1605–1613 (1988). [CrossRef]
  5. D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, "Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers," IEEE Photon. Technol. Lett. 2, 173–174 (1990). [CrossRef]
  6. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]
  7. S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tassano, and W. F. Krupke, "Laser, optical and thermo-mechanical properties of Yb-doped fluorapatite," IEEE J. Quantum Electron, (to be published).
  8. W. L. Wanmaker, J. W. ter Vrugt and J. G. Verlijsdonk, "Synthesis of new compounds with apatite structure," Phillips Res. Rep. 26, 373–381 (1971).
  9. A. G. Cockbain, "The crystal chemistry of the apatites," Mineral. Mag. 36, 654–660 (1968). [CrossRef]
  10. E. R. Kreidler and F. A. Hummel, "The crystal chemistry of apatite: structure fields of fluor- and chlorapatite," Am. Mineral. 55, 170–184 (1970).
  11. Y. K Voronko, G. V. Maksimova, and A. A. Sobol, "Anisotropic luminescence centers of TR+3 ions in fluorapatite crystals," Opt. Spectrosc. (USSR) 70, 203–206 (1991).
  12. A. A. Kaplyanskii and E. G. Kuzminov, "Piezospectroscopic effect and local-field symmetry in neodymium-doped fluorapatite crystals," Opt. Spectrosc. (USSR) 29, 376–381 (1970).
  13. P. D. Johnson, "Some optical properties of powder and crystal halophosphate phosphors," J. Electrochem. Soc. 108, 159–162 (1961). [CrossRef]
  14. R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, "Crystal growth of a new laser material, fluorapatite," J. Electrochem. Soc. 115, 68–70 (1968). [CrossRef]
  15. R. Mazelsky, R. H. Hopkins, and W. E. Kramer, "Czochralski-growth of calcium fluorophosphate," J. Cryst. Growth 34, 360 (1968).
  16. R. H. Hopkins and W. E. Kramer, "The origin of secondary phases in melt-grown fluorapatite crystals," J. Electrochem. Soc. 116, 637 (1969). [CrossRef]
  17. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, "Thermomechanical and thermooptical properties of the LiCaAlF6:Cr3+ laser material," J. Opt. Soc. Am. B 8, 970–977 (1991). [CrossRef]
  18. L. W. Tilton, "Testing and accurate use of Abbé-type refrac-tometers," J. Opt. Soc. Am. 32, 371–382 (1942). [CrossRef]
  19. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazel-sky, N. T. Melamed, E. P. Riedel, and G. W. Roland, "Laser properties of Nd3+ and Ho3+ doped crystals with the apatite structure," Appl. Opt. 11, 999–1012 (1972). [CrossRef] [PubMed]
  20. R. H. Hopkins, D. H. Damon, P. Piotrowski, M. S. Walker, and J. H. Uphoff, "Thermal properties of synthetic fluorapatite crystals," J. Appl. Phys. 42, 272–275 (1971). [CrossRef]
  21. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102–114 (1986). [CrossRef]
  22. D. McConnell, Apatite: Its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences (Springer-Verlag, Berlin, 1973), p. 90.
  23. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited