OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 12, Iss. 2 — Feb. 1, 1995
  • pp: 212–219

High-precision reflectometer for submillimeter wavelengths

A. J. Gatesman, R. H. Giles, and J. Waldman  »View Author Affiliations


JOSA B, Vol. 12, Issue 2, pp. 212-219 (1995)
http://dx.doi.org/10.1364/JOSAB.12.000212


View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-precision reflectometer has been designed and implemented to measure directly the specular reflectance (R) of materials in the submillimeter (SM) region of the spectrum (300 GHz < ν < 3000 GHz). Previous laser-based measurement systems were limited to an uncertainty in R of ± 1.0% because of a number of issues such as lack of an absolute reflection standard, difficulties in the interchange of sample and standard in the laser beam, and instabilities in the laser system. We realized a SM reflection standard by ellipsometrically characterizing the complex index of refraction of high-purity, single-crystal silicon to a precision such that its SM reflectivity could be calculated to better than ±0.03%. To deal with alignment issues, a precision sample holder was designed and built to accommodate both sample and silicon reflection standard on an air-bearing rotary stage. The entire measurement system operated under computer control and included ratioing of the reflected signal to a reference laser signal, measured simultaneously, to help to eliminate short-term laser instabilities. Many such measurements taken rapidly in succession helped to eliminate the effects of both source and detector drift. A liquid-helium-cooled bolometer was modified with a large area detecting element to help to compensate for the slight residual misalignment between sample and reflection standard as they were positioned into and out of the laser beam. These modifications enabled the final measurement precision for R to be reduced to less than 0.1%. The major contribution to this uncertainty was the difficulty in precisely exchanging the positions of sample and standard into and out of the laser beam and was not due to laser or detector noise or instabilities. In other words, further averaging would not help to reduce this uncertainty. This order-of-magnitude improvement makes possible, for the first time to our knowledge, high-precision reflectance measurements of common metals such as copper, gold, aluminum, and chromium whose predicted reflectivities exceed 99% in the SM region. Furthermore, precise measurement of the high-frequency losses in high-temperature superconducting materials is now also possible. Measurements reported here of metals at a laser wavelength of λ = 513.01 μm (ν ≈ 584 GHz) indicate a slight discrepancy between experimental and theoretically predicted values, with measured results falling 0.1–0.3% below predicted values.

© 1995 Optical Society of America

Citation
A. J. Gatesman, R. H. Giles, and J. Waldman, "High-precision reflectometer for submillimeter wavelengths," J. Opt. Soc. Am. B 12, 212-219 (1995)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-12-2-212

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited