OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 12, Iss. 6 — Jun. 1, 1995
  • pp: 1083–1093

Holography in frequency-selective media. III. Spectral synthesis of arbitrary time-domain pulse shapes

Heinrich Schwoerer, Daniel Erni, and Alexander Rebane  »View Author Affiliations

JOSA B, Vol. 12, Issue 6, pp. 1083-1093 (1995)

View Full Text Article

Acrobat PDF (661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically and experimentally the synthesis of arbitrary time-domain pulse shapes, using short laser pulses scattered by holograms stored in a spectrally selective hole-burning material. In general, writing holograms in spectrally selective materials results in cross talk and interference between different frequencies because of Kramers–Kronig dispersion relations. We discuss different ways to exclude the cross talk that disturbs faithful reproduction of the desired time-domain pulse shapes. In particular, we show that one can exclude the cross talk by writing holograms in a way that simulates a time-domain offset of the object pulse. To confirm our theoretical considerations we carry out experiments by writing persistent spectral hole-burning holograms with a tunable dye laser in an organic dye–polymer system at low temperature. By reading out the time-domain response with subpicosecond white-light pulses we demonstrate the feasibility of spectral synthesis of light pulses with complicated amplitude and phase properties on the time scale of hundreds of picoseconds with a subpicosecond time resolution.

© 1995 Optical Society of America

Heinrich Schwoerer, Daniel Erni, and Alexander Rebane, "Holography in frequency-selective media. III. Spectral synthesis of arbitrary time-domain pulse shapes," J. Opt. Soc. Am. B 12, 1083-1093 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. A. Gorokhovskii, R. K. Kaarli, and L. A. Rebane, "Hole burning in the contour of a pure electronic line in a Shpolskii system," JETP Lett. 20, 216–219 (1974); B. M. Kharlamov, R. I. Personov, and L. A. Bykovskaya, "Stable gap in absorption spectra of solid solutions of organic molecules by laser irradiation," Opt. Commun. 12, 191–194 (1974).
  2. L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, "Lowtemperature spectroscopy of organic molecules in solids by photochemical hole burning," Appl. Phys. B 29, 235–250 (1982); J. Friedrich and D. Haarer, "Photochemical hole burning: spectroscopic study of relaxation processes in polymers and glasses," Angew. Chem. Int. Ed. Engl. 23, 113–140 (1984).
  3. W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), and references therein.
  4. K. Holliday and U. P. Wild, "Spectral hole burning," in Molecular Luminescence Spectroscopy. Part 3, S. G. Schulman, ed., Vol. 77 of Chemical Analysis Series (Wiley, New York, 1993), p. 149.
  5. K. K. Rebane, Impurity Spectra of Solids (Plenum, New York, 1970).
  6. A. Renn, A. J. Meixner, U. P. Wild, and F. A. Burkhalter, "Holographic detection of photochemical holes," Chem. Phys. 93, 157–162 (1985).
  7. A. Renn and U. P. Wild, "Spectral hole burning and hologram storage," Appl. Opt. 26, 4040–4042 (1987); A. J. Meixner, A. Renn, and U. P. Wild, "Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes," J. Chem. Phys. 91, 6728–6736 (1989); U. P. Wild, A. Renn. C. De Caro, and S. Bernet, "Spectral hole burning and molecular computing," Appl. Opt. 29, 4329–4331 (1990).
  8. A. Renn, A. J. Meixner, and U. P. Wild, "Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holgorams," J. Chem. Phys. 92, 2748–2755 (1990).
  9. T. W. Mossberg, "Time-domain frequency-selective optical data storage," Opt. Lett. 7, 77–79 (1982).
  10. N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, "Storage and time reversal of light pulses using photon echoes," Opt. Lett. 8, 483–485 (1983).
  11. A. K. Rebane, R. K. Kaarli, and P. M. Saari, "Hole burning by coherent sequences of picosecond pulses," JETP Lett. 38, 383–386 (1983); A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, "Photochemical time-domain holography of weak picosecond pulses," Opt. Commun. 47, 173–176 (1983); A. Rebane and R. Kaarli, "Picosecond pulse shaping by photochemical time domain holography," Chem. Phys. Lett. 101, 317–319 (1983).
  12. P. Saari and A. Rebane, "Time- and space-domain holography of pulsed light fields in a spectrally photo-active medium," Proc. Estonian Acad. Sci. Phys. Math. 33, 322–332 (1984); P. Saari, R. Kaarli, and A. Rebane, "Picosecond timeand space-domain holography by photochemical hole burning," J. Opt. Soc. Am. B 3, 527–533 (1986); A. Rebane, "Coherent recall and time–space holography in impurity systems with photochemical hole-burning," Ph.D. dissertation (Institute of Physics, Estonian Academy of Sciences, Tartu, Estonia, 1985).
  13. A. Rebane, J. Aaviksoo, and J. Kuhl, "Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography," Appl. Phys. Lett. 54, 93–95 (1989); A. Rebane and J. Feinberg, "Time-resolved holography," Nature 351, 378–380 (1991); H. Gygax, A. Rebane, and U. P. Wild, "Stark effect in dye-doped polymers studied by photochemically accumulated photon echo," J. Opt. Soc. Am. B 10, 1149–1158 (1993).
  14. Yu. T. Mazurenko, "Holography of wave packets," Appl. Phys. B 50, 101–114 (1990).
  15. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron. 28, 2251–2261 (1992).
  16. M. Mitsunaga, R. Yano, and N. Uesugi, "Spectrally programmed stimulated photon echo," Opt. Lett. 16, 264–266 (1991).
  17. H. S˜najalg, A. Gorokhovskii, R. Kaarli, V. Palm, M. Rätsep, and P. Saari, "Optical pulse shaping by filters based on spectral hole burning," Opt. Commun. 71, 377–380 (1989).
  18. H. Schwoerer, D. Erni, A. Rebane, and U. P. Wild, "Subpicosecond pulse shaping via spectral hole burning," Opt. Commun. 107, 123–128 (1994).
  19. A. Rebane, S. Bernet, A. Renn, and U. P. Wild, "Holography in frequency selective media: hologram phase and causality," Opt. Commun. 86, 7–13 (1991).
  20. S. Bernet, B. Kohler, A. Rebane, A. Renn, and U. P. Wild, "Holography in frequency selective media. II. Controlling the diffraction efficiency," J. Lumin. 53, 215–218 (1992).
  21. S. Bernet, B. Kohler, A. Rebane, A. Renn, and U. P. Wild, "Spectral hole burning and holography. V. Asymmetric diffraction from thin holograms," J. Opt. Soc. Am. B 9, 987–991 (1992).
  22. S. Bernet, "Phasenkontrollierte Holographie in frequenzselektiven Materialien," Ph.D. dissertation Diss ETH Nr. 10292 (Swiss Federal Institute of Technology, Zurich, 1993).
  23. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  24. J. H. Eberly, S. R. Hartmann, and A. Szabo, "Propagation narrowing in the transmission of a light pulse through a spectral hole," Phys. Rev. A 23, 2502–2506 (1981); M. D. Crisp, "Propagation of small-area pulses of coherent light through a resonant medium," Phys. Rev. A 1, 1604–1611 (1970).
  25. A. Rebane, "Associative space-and-time domain recall of picosecond light signals via photochemical hole burning holography," Opt. Commun. 65, 175–178 (1988); "Associative recall of time- and space-domain holograms in spectrally selective photo-active medium," Proc. Estonian Acad. Sci. Phys. Math. 37, 89–92 (1988).
  26. D. E. Vakman and L. A. Vainstein, "Amplitude, phase, frequency—fundamental concepts of oscillation theory," Sov. Phys. Usp. 20, 1002–1016 (1977).
  27. T. W. Mossberg, R. Kachru, and S. R. Hartmann, "Echoes in gaseous media: a generalized theory of rephasing phenomena," Phys. Rev. A 20, 1976–1996 (1979).
  28. A. J. Meixner, A. Renn, S. E. Bucher, and U. P. Wild, "Spectral hole burning in glasses and polymer films: the Stark effect," J. Phys. Chem. 90, 6777–6785 (1986).
  29. T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, "Measurement of the Pancharatnam phase for a light beam," Opt. Lett. 13, 562–564 (1988).
  30. S. O. Elyutin, S. M. Zakharov, and E. M. Manykin, "Theory of formation of photon echo pulses," Sov. Phys. JETP 49, 421–431 (1979).
  31. V. A. Zuikov, V. V. Samartsev, and R. G. Usmanov, "Correlation of the shape of photon echo signals with the shape of excitation pulses," JETP Lett. 32, 270–274 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited