OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 12, Iss. 7 — Jul. 1, 1995
  • pp: 1238–1248

Spatial filtering in nonlinear two-dimensional feedback systems: phase-distortion suppression

E. V. Degtiarev and M. A. Vorontsov  »View Author Affiliations

JOSA B, Vol. 12, Issue 7, pp. 1238-1248 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear-optical methods for input field phase-distortion suppression and corresponding improvement of spatial coherence properties are presented. Analytical results obtained for different nonlinear two-dimensional feedback systems are verified by direct numerical simulation. Our experiments have demonstrated evidence of phase-distortion suppression.

© 1995 Optical Society of America

E. V. Degtiarev and M. A. Vorontsov, "Spatial filtering in nonlinear two-dimensional feedback systems: phase-distortion suppression," J. Opt. Soc. Am. B 12, 1238-1248 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. B. Abraham and W. J. Firth, "Overview of transverse effects in nonlinear optical systems," J. Opt. Soc. Am. B 7, 951–962 (1990). [CrossRef]
  2. J. V. Moloney and A. C. Newell, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1991).
  3. L. A. Lugiato, "Spatio-temporal structures. Part 1," Phys. Rep. 219, 293–310 (1992). [CrossRef]
  4. G. Grynberg, A. Maître, and A. Petrossian, "Flowerlike patterns generated by a laser beam transmitted through a rubidium cell with single feedback mirror," Phys. Rev. Lett. 72, 2379–2382 (1994). [CrossRef] [PubMed]
  5. W. J. Firth and M. A. Vorontsov, "Adaptive phase distortion suppression in nonlinear system with feedback mirror," J. Mod. Opt. 40, 1841–1846 (1993). [CrossRef]
  6. M. A. Vorontsov and I. P. Nikolaev, "Nonlinear 2-D feedback optical systems: new approaches for adaptive wavefront correction," in Atmospheric Propagation and Remote Sensing III, W. A. Flood and W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2222, 413–422 (1994). [CrossRef]
  7. A. D. Fisher and C. Warde, "Technique for real-time highresolution adaptive phase compensation," Opt. Lett. 8, 353–355 (1983). [CrossRef] [PubMed]
  8. M. A. Vorontsov and K. V. Shishakov, "Phase-distortion suppression in nonlinear cavities with gain," J. Opt. Soc. Am. B 9, 71–77 (1992). [CrossRef]
  9. G. Giusfredi, J. F. Valley, R. Pon, G. Khitrova, and H. M. Gibbs, "Optical instabilities in sodium vapor," J. Opt. Soc. Am. B 5, 1181–1191 (1988). [CrossRef]
  10. W. J. Firth, "Spatial instabilities in a Kerr medium with single feedback mirror," J. Mod. Opt. 37, 151–153 (1990). [CrossRef]
  11. G. D'Alessandro and W. J. Firth, "Hexagonal spatial patterns for a Kerr slice with a feedback mirror," Phys. Rev. A 46, 537–548 (1992). [CrossRef]
  12. M. A. Vorontsov and W. J. Firth, "Pattern formation and competition in nonlinear optical systems with twodimensional feedback," Phys. Rev. A 49, 2891–2903 (1994). [CrossRef] [PubMed]
  13. M. Tamburrini, M. Bonavita, S. Wabnitz, and E. Santamato, "Hexagonally patterned beam filamentation in a thin liquidcrystal film with a single feedback mirror," Opt. Lett. 18, 855–857 (1993). [CrossRef] [PubMed]
  14. For an input field with homogeneous intensity distribution the term R|A(r,0,t)|2 gives rise to an insignificant spatially uniform phase shift ū = R|A0|2, which can be removed by redefinition of u.
  15. M. A. Vorontsov, V. Yu. Ivanov, and V. I. Shmalhausen, "Rotatory instability of the spatial structure of light fields in nonlinear media with two-dimensional feedback," in Laser Optics of Condensed Matter: Proceedings of the 3rd Binational USA–USSR Symposium (Plenum, New York, 1988), pp. 507–517. [CrossRef]
  16. A. A. Vasiliev, D. Casasent, I. N. Kompanets, and A. V. Parfionov, Spatial Light Modulators (Radio i Sviaz, Moscow, 1987).
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  18. E. V. Degtiarev and M. A. Vorontsov, "Optical design kit of nonlinear spatial dynamics," in Self-Organization in Optical Systems and Applications in Information Technology, M. A. Vorontsov and W. B. Miller, eds. (Springer-Verlag, Berlin, 1995). [CrossRef]
  19. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, Jr., and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989). [CrossRef]
  20. R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, Calif., 1991).
  21. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, Mass., 1975), Vol. 2.
  22. W. F. Ames, Numerical Methods for Partial Differential Equations (Academic, San Diego, Calif., 1992).
  23. M. A. Vorontsov, "Akhseals' as a new class of spatialtemporal instabilities of optical fields," Sov. J. Quantum Electron. 23, 269–271 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited