OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 12, Iss. 9 — Sep. 1, 1995
  • pp: 1586–1594

Cavity-enhaced and quasi-phase-matched optical frequency doublers in surface-emitting geometry

Yujie J. Ding, Jacob B. Khurgin, and Seung-Joon Lee  »View Author Affiliations

JOSA B, Vol. 12, Issue 9, pp. 1586-1594 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that we can efficiently achieve surface-emitting second-harmonic generation in vertical and horizontal cavities. The fundamental beam is coupled into the waveguide, which consists of III–V or II–VI semiconductor multilayers or asymmetric quantum-well domain structures. The generated second-harmonic radiation propagates along the growth direction of these layers (which is normal to the propagation direction of the fundamental beam). The quasi-phase matching is achieved when second-order susceptibility is modulated along the growth direction in these structures. By the proper design of these structures, the frequency doublers based on these structures together can cover the spectrum of 0.8–2.0 μm. If the pump power density is sufficiently large, the conversion efficiency approaches saturation. The saturation power per unit waveguide width is between ~0.9 and ~435 mW/μm. At such a power density, 72% conversion efficiency can be achieved. In addition, the proposed frequency doublers are, in principle, broadband.

© 1995 Optical Society of America

Yujie J. Ding, Jacob B. Khurgin, and Seung-Joon Lee, "Cavity-enhaced and quasi-phase-matched optical frequency doublers in surface-emitting geometry," J. Opt. Soc. Am. B 12, 1586-1594 (1995)

Sort:  Author  |  Journal  |  Reset  


  1. N. Bloembergen, U.S. Patent 3,384,433 (May 21, 1968).
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992). [CrossRef]
  3. R. Normandin, R. L. Williams, and F. Chatenoud, Electron. Lett. 26, 2088 (1990); R. Normandin, H. Dai, S. Janz, A. Delage, J. Brown, and F. Chatenoud, Appl. Phys. Lett. 62, 118 (1993); D. Vakhshoori, R. J. Fischer, M. Hong, D. L. Sivco, G. J. Zydzik, G. N. S. Chu, and A. Y. Cho, Appl. Phys. Lett. 59, 896 (1991). [CrossRef]
  4. R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, Jr., Opt. Lett. 18, 1798 (1993). [CrossRef] [PubMed]
  5. J. Khurgin, Appl. Phys. Lett. 21, 2100 (1987); Phys. Rev. B38, 4056 (1988); J. Appl. Phys. 64, 5026 (1988); J. Opt. Soc. Am. B 6, 1673 (1989). [CrossRef]
  6. S. Janz, F. Chatenoud, and R. Normandin, Opt. Lett. 19, 622 (1994). [CrossRef] [PubMed]
  7. J. B. Khurgin, S. J. Lee, and Y. J. Ding, in Proceedings of NAECON′94 (IEEE, New York, 1994), p. 520.
  8. R. Normandin, S. Letourneau, F. Chatenoud, and R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991); D. Vakhshoori and S. Wang, J. Lightwave Technol. 9, 906 (1991). [CrossRef]
  9. S. Janz, E. Frlan, H. Dai, F. Chatenoud, and R. Normandin, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 263.
  10. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, and H. Vanhertzeele, Opt. Lett. 17, 28 (1992); G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, and G. Assanto, Opt. Lett. 18, 13 (1993); A. E. Kaplan, Opt. Lett. 18, 1223 (1993). [CrossRef] [PubMed]
  11. J. B. Khurgin and Y. J. Ding, Opt. Lett. 19, 1016 (1994). [CrossRef] [PubMed]
  12. Y. J. Ding, J. B. Khurgin, and S. J. Lee, in CCAST-WL Workshop Series: Vol. 38, Ultrafast Phenomena, K. Shum, Y. J. Ding, and X. C. Zhang, eds. (Gordon & Breach, Beijing, 1994), p. 60.
  13. S. J. Lee, J. B. Khurgin, and Y. J. Ding, J. Opt. Soc. Amer. B 12, 275 (1995). [CrossRef]
  14. A. Yariv, Quantum Electronics (Wiley, New York, 1989), p. 500.
  15. S. Li and J. Khurgin, Appl. Phys. Lett. 62, 1727 (1993); Z. Chen, M. Li, D. Cui, H. Lu, and G. Yang, Appl. Phys. Lett. 62, 1502 (1993). [CrossRef]
  16. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. H. Lin, and H. H. Lin, Appl. Phys. Lett. 62, 2465 (1993). [CrossRef]
  17. T. S. Moss, Optical Properties of Semiconductors (Butter-worths, London, 1959), p. 48.
  18. K. W. Böer, Survey of Semiconductor Physics (Van Nostrand, New York, 1990), p. 235.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited