OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 12, Iss. 9 — Sep. 1, 1995
  • pp: 1621–1627

Investigation of photorefractive subharmonics in the absence of wave mixing

B. I. Sturman, T. E. McClelland, D. J. Webb, E. Shamonina, and K. H. Ringhofer  »View Author Affiliations

JOSA B, Vol. 12, Issue 9, pp. 1621-1627 (1995)

View Full Text Article

Acrobat PDF (369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a new optical configuration free from the influence of photorefractive optical nonlinearity, we investigate the main characteristics of the spatial subharmonic K/2 excited in a Bi12SiO20 crystal by a light-intensity pattern with wave vector K and frequency Ω. It is shown that in a large region of intensity and applied electric field the optimum value Ω of the frequency corresponds to the conditions of parametric excitation of the weakly damped eigenmodes of the medium: the space-charge waves. The threshold and above-threshold characteristics of the subharmonic regime are in good agreement with the theory.

© 1995 Optical Society of America

B. I. Sturman, T. E. McClelland, D. J. Webb, E. Shamonina, and K. H. Ringhofer, "Investigation of photorefractive subharmonics in the absence of wave mixing," J. Opt. Soc. Am. B 12, 1621-1627 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, and J.-P. Huignard, "Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium," J. Appl. Phys. 63, 5660–5663 (1988).
  2. D. C. Jones and L. Solymar, "Competition between subharmonic and resonating beams for photorefractive gain in bismuth silicon oxide," Opt. Lett. 14, 743–744 (1989).
  3. D. J. Webb and L. Solymar, "Observation of spatial subharmonics arising during two-wave mixing in BSO," Opt. Commun. 74, 386–389 (1990).
  4. D. J. Webb, L. B. Au, D. C. Jones, and L. Solymar, "Onset of subharmonics generated by forward wave interactions in Bi12SiO20," Appl. Phys. Lett. 57, 1602–1604 (1990).
  5. J. Takacs and L. Solymar, "Subharmonics in Bi12SiO20 with an applied ac electric field," Opt. Lett. 17, 247–248 (1992).
  6. B. Sturman, A. Bledowski, J. Otten, and K. H. Ringhofer, "Spatial subharmonics in photorefractive crystals," J. Opt. Soc. Am. B 9, 672–681 (1992).
  7. A. Bledowski, J. Otten, K. H. Ringhofer, and B. Sturman, "Subharmonics in photorefractive crystals," Sov. Phys. JETP 75, 215–224 (1992).
  8. B. I. Sturman, M. Mann, and K. H. Ringhofer, "Instability of moving gratings in photorefractive crystals," Appl. Phys. A 55, 235–241 (1992).
  9. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, "Space-charge waves and their parametric excitation," J. Opt. Soc. Am. B 10, 1919–1932 (1993).
  10. J. Richter, A. Grunnet-Jepsen, J. Takacs, and L. Solymar, "An experimental and theoretical study of spatial subharmonics in a photorefractive Bi12GeO20 crystal induced by a dc-field and by the moving-grating technique," IEEE J. Quantum Electron. 30, 1645–1650 (1994).
  11. T. E. McClelland, D. J. Webb, B. I. Sturman, and K. H. Ringhofer, "Generation of spatial subharmonic gratings in the absence of photorefractive beam coupling," Phys. Rev. Lett. 73, 3082–3084 (1994).
  12. V. E. Zakharov, V. S. L'vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer Series in Nonlinear Dynamics (Springer-Verlag, Berlin, 1992), Chap. 5, p. 207.
  13. D. R. Nicholson, Introduction to Plasma Theory (Wiley-Interscience, New York, 1983), Chap. 3, p. 137.
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), Chap. 28, p. 541.
  15. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988 and 1989), Chap. 2, p. 7.
  16. A. Marrakchi, R. V. Johnson, and J. A. R. Tanguay, "Polarization properties of photorefractive diffraction in electrooptic and optically active sillenite crystals (Bragg regime)," J. Opt. Soc. Am. B 3, 321–336 (1986).
  17. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991), Chap. 7, p. 133.
  18. P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, "Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments," J. Appl. Phys. 58, 45–57 (1985).
  19. G. A. Brost, K. M. Madge, J. J. Larkin, and T. Harris, "Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment," J. Opt. Soc. Am. B 11, 1764–1772 (1994).
  20. T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, and K. H. Ringhofer, "Low frequency peculiarities of the photorefractive response in sillenites," Opt. Commun. 113, 371–377 (1995).
  21. S. Mallick, D. Rouède, and A. G. Apostolidis, "Efficiency and polarization characteristics of photorefractive diffraction in a Bi12SiO20 crystal," J. Opt. Soc. Am. B 4, 1247–1259 (1987).
  22. B. I. Sturman, D. J. Webb, R. Kowarschik, E. Shamonina, and K. H. Ringhofer, "Exact solution of the Bragg diffraction problem in sillenites," J. Opt. Soc. Am. B 11, 1813–1819 (1994).
  23. F. Vachss and L. Hesselink, "Holographic beam coupling in anisotropic photorefractive media," J. Opt. Soc. Am. A 4, 325–339 (1987).
  24. P. Pauliat, J. M. Cohen-Jonathan, M. Allain, J. C. Launay, and G. Roosen, "Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis," Opt. Commun. 59, 266–271 (1986).
  25. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals," Ferroelectrics 22, 949–964 (1979).
  26. F. Vachss and L. Hesselink, "Selective enhancement of spatial harmonics of a photorefractive grating," J. Opt. Soc. Am. B 5, 1814–1821 (1988).
  27. R. Grousson, M. Henry, and S. Mallick, "Transport properties of photoelectrons in Bi12SiO20," J. Appl. Phys. 56, 224–229 (1984).
  28. R. A. Mullen and R. W. Hellwarth, "Optical measurement of the photorefractive parameters of Bi12SiO20," J. Appl. Phys. 58, 40–44 (1985).
  29. J. P. Partanen, J. M. C. Jonathan, and R. W. Hellwarth, "Direct determination of electron mobility in photorefractive Bi12SiO20 by a holographic time-of-flight technique," Appl. Phys. Lett. 57, 2404–2406 (1990).
  30. G. Pauliat, A. Villing, J. C. Launay, and G. Roosen, "Optical measurements of charge-carrier mobilities in photorefractive sillenite crystals," J. Opt. Soc. Am. B 7, 1481–1486 (1990).
  31. H. Pedersen and P. M. Johansen, "Observation of angularly tilted subharmonic gratings in photorefractive bismuth silicon oxide," Opt. Lett. 19, 1418–1420 (1994).
  32. J. Kumar, G. Albanese, and W. H. Steier, "Measurement of two-wave mixing gain in GaAs with a moving grating," Opt. Commun. 63, 191–193 (1987).
  33. B. Imbert, H. Rajbenbach, S. Mallick, J.-P. Herriau, and J.-P. Huignard, "High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals," Opt. Lett. 13, 327–329 (1988).
  34. Y. Belaud, P. Delaye, J.-C. Launay, and G. Roosen, "Photorefractive response of CdTe:V under ac electric field from 1 to 1.5 μm," Opt. Commun. 105, 204–208 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited