OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 12, Iss. 9 — Sep. 1, 1995
  • pp: 1628–1633

Bright, dark, and gray spatial soliton states in photorefractive media

D. N. Christodoulides and M. I. Carvalho  »View Author Affiliations


JOSA B, Vol. 12, Issue 9, pp. 1628-1633 (1995)
http://dx.doi.org/10.1364/JOSAB.12.001628


View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theory based on the Kukhtarev–Vinetskii model is developed that provides the evolution equation of one-dimensional optical spatial solitons in photorefractive media. In the steady-state regime and under appropriate external bias conditions, our analysis indicates that the underlying wave equation can exhibit bright and dark as well as gray spatial soliton states. The characteristics of these self-trapped optical beams are discussed in detail.

© 1995 Optical Society of America

Citation
D. N. Christodoulides and M. I. Carvalho, "Bright, dark, and gray spatial soliton states in photorefractive media," J. Opt. Soc. Am. B 12, 1628-1633 (1995)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-12-9-1628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533 (1993). [CrossRef] [PubMed]
  2. M. D. Castillo, P. A. Aguilar, J. J. Mondragon, S. Stepanov, and V. Vysloukh, "Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity," Appl. Phys. Lett. 64, 408 (1994). [CrossRef]
  3. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923 (1992). [CrossRef] [PubMed]
  4. B. Crosignani, M. Segev, D. Engin, P. D. Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446 (1993). [CrossRef]
  5. P. Gunter and J. P. Huignard, eds., Photorefractive Materials and Their Applications I and II (Springer-Verlag, Berlin, 1988); P. Yeh, Photorefractive Nonlinear Optics (Wiley, New York, 1993). [CrossRef]
  6. D. N. Christodoulides and M. I. Carvalho, "Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals," Opt. Lett. 19, 1714 (1994). [CrossRef] [PubMed]
  7. M. Segev, B. Crosignani, P. D. Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296 (1994). [CrossRef] [PubMed]
  8. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195 (1994). [CrossRef] [PubMed]
  9. N. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949 (1979); V. O. Vinetskii and N. V. Kukhtarev, "Theory of the conductivity induced by recording holographic gratings in nonmetallic crystals," Sov. Phys. Solid State 16, 2414 (1975). [CrossRef]
  10. M. Morin, G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. Sharp, and R. Neurgaonkar, "Photorefractive dark solitons," presented at Optical Society of America Annual Meeting, Dallas, TX, October 2–7, 1994.
  11. M. D. Castillo, P. A. Aguilar, J. J. Mondragon, S. I. Stepanov, M. B. Klein, and B. A. Wechsler, "Spatial dark solitons in photorefractive Bi12TiO20 crystal," presented at Optical Society of America Annual Meeting, Dallas, TX, October 2–7, 1994.
  12. R. A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, "Photorefractive properties of SBN:60 systematically doped with rhodium," J. Opt. Soc. Am. B 9, 1416 (1992). [CrossRef]
  13. This approximation as well as the neglect of diffusion effects can be justified more physically in terms of the inequality Ed « Esc « Eq, where Eq and Ed are the limiting space-charge field and the diffusion field, respectively, with both evaluated at the soliton length scale.
  14. S. Gatz and J. Herrmann, "Soliton propagation in materials with saturable nonlinearity," J. Opt. Soc. Am. B 8, 2296 (1991). [CrossRef]
  15. V. E. Zakharov and P. B. Shabat, "Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media," Sov. Phys. JETP 34, 62 (1972).
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989).
  17. Y. Kodama and A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. 23, 510 (1987). [CrossRef]
  18. K. J. Blow, N. J. Doran, and D. Wood, "Suppression of the soliton self-frequency shift by bandwidth-limited amplification," J. Opt. Soc. Am. B 5, 1301 (1988). [CrossRef]
  19. A. Hasegawa and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion," Appl. Phys. Lett. 23, 171 (1973). [CrossRef]
  20. Note that the dark irradiance Id can be elevated artificially, as done in Ref. 2.
  21. M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited