OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 12, Iss. 9 — Sep. 1, 1995
  • pp: 1642–1650

Space-charge waves in photorefractive ferroelectrics

B. I. Sturman, E. Shamonina, M. Mann, and K. H. Ringhofer  »View Author Affiliations


JOSA B, Vol. 12, Issue 9, pp. 1642-1650 (1995)
http://dx.doi.org/10.1364/JOSAB.12.001642


View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The conditions for the existence and the main characteristics of weakly damped space-charge waves are investigated for photorefractive ferroelectrics. These conditions are opposite those derived previously for sillenites and may be fulfilled in such crystals as LiNbO3, BaTiO3, and SrBaNb2O6. The waves exist for sufficiently large values of the applied or photovoltaic field and have a linear dispersion law. The resonance excitation of space-charge waves by a moving light pattern is investigated. Possible manifestations of the instability of the photorefractive grating against parametric excitation of eigenmodes are considered.

© 1995 Optical Society of America

Citation
B. I. Sturman, E. Shamonina, M. Mann, and K. H. Ringhofer, "Space-charge waves in photorefractive ferroelectrics," J. Opt. Soc. Am. B 12, 1642-1650 (1995)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-12-9-1642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, and J.-P. Huignard, "Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium," J. Appl. Phys. 63, 5660–5663 (1988). [CrossRef]
  2. D. J. Webb and L. Solymar, "Observation of spatial subharmonics arising during two-wave mixing in BSO," Opt. Commun. 74, 386–389 (1990). [CrossRef]
  3. J. Takacs and L. Solymar, "Subharmonic in Bi12SiO20 with an applied ac electric field," Opt. Lett. 17, 247–248 (1992). [CrossRef] [PubMed]
  4. A. Grunnet-Jepsen and L. Solymar, "Effect of subharmonics on two-wave gain in Bi12SiO20 under alternating electric fields," Opt. Lett. 19, 1299–1301 (1994). [CrossRef] [PubMed]
  5. B. Sturman, A. Bledowski, J. Otten, and K. H. Ringhofer, "Spatial subharmonics in photorefractive crystals," J. Opt. Soc. Am. B 9, 672–681 (1992). [CrossRef]
  6. B. I. Sturman, M. Mann, and K. H. Ringhofer, "Instability of moving gratings in photorefractive crystals," Appl. Phys. A 55, 235–241 (1992). [CrossRef]
  7. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, "Space-charge waves and their parametric excitation," J. Opt. Soc. Am. B 10, 1919–1932 (1993). [CrossRef]
  8. A. Grunnet-Jepsen, I. Richter, M. Shamonin, and L. Solymar, "Subharmonic instabilities in photorefractive crystals for an applied alternating electric field: theoretical analysis," J. Opt. Soc. Am. B 11, 132–135 (1994). [CrossRef]
  9. O. P. Nestiorkin and Y. P. Shershakov, "Parametric generation of a spatial subharmonic grating in photorefractive crystals: theory," J. Opt. Soc. Am. B 10, 1909–1918 (1993). [CrossRef]
  10. T. E. McClelland, D. J. Webb, B. I. Sturman, and K. H. Ringhofer, "Generation of spatial subharmonic gratings in the absence of photorefractive beam coupling," Phys. Rev. Lett. 73, 3082–3084 (1994). [CrossRef] [PubMed]
  11. R. F. Kazarinov, R. A. Suris, and B. I. Fuks, "Instability with respect to waves of spatial charge-exchange in compensated semiconductors," Sov. Phys. Semicond. 7, 480–485 (1973).
  12. S. Stepanov, V. V. Kulikov, and M. P. Petrov, "'Running' holograms in photorefractive Bi12SiO20 crystals," Opt. Commun. 44, 19–23 (1982). [CrossRef]
  13. P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, "Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments," J. Appl. Phys. 58, 45–57 (1985). [CrossRef]
  14. A. Furman, "Photovoltaic instabilities," Ferroelectrics 83, 41–52 (1988). [CrossRef]
  15. O. P. Nestiorkin and Y. P. Shershakov, "Parametric generation of a spatial subharmonic photorefractive grating in an external dc field with a small electron drift length," presented at the meeting on Photorefractive Materials, Effects, and Devices, PRM'93, August 11–14, 1993. Theophania, Kiev, Ukraine.
  16. G. C. Valley and J. F. Lam, "Theory of photorefractive effects in electro-optic crystals," in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., volume 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 75–98. [CrossRef]
  17. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals," Ferroelectrics 22, 949–960, 961–964 (1979). [CrossRef]
  18. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effect in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, Pa., 1992).
  19. M. Klein, "Photorefractive properties of BaTiO3," in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 195–236. [CrossRef]
  20. G. A. Brost, R. A. Motes, and J. R. Rotge, "Intensity-dependent absorption and photorefractive effects in barium titanate," J. Opt. Soc. Am. B 5, 1879–1885 (1988). [CrossRef]
  21. G. A. Brost and R. A. Motes, "Origin of sublinear photorefractive response time in BaTiO3," Opt. Lett. 15, 1194–1196 (1990). [CrossRef] [PubMed]
  22. N. Bary, L. Duffault, R. Troth, R. Ramos-Garsia, and M. J. Damzen, "Comparison between continuous-wave and pulsed photorefraction in barium titanate," J. Opt. Soc. Am. B 11, 1758–1763 (1994). [CrossRef]
  23. R. A. Vasquez, M. D. Ewbank, and R. R. Neurgaonkar, "Photorefractive properties of doped strontium-barium niobate," Opt. Commun. 80, 253–258 (1991). [CrossRef]
  24. M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, "Photorefractive properties of strontium-barium niobate," J. Appl. Phys. 62, 374–380 (1987). [CrossRef]
  25. R. A. Vasquez, R. R. Neurgaonkar, and M. D. Ewbank, "Photorefractive properties of SBN:60 systematically doped with rhodium," J. Opt. Soc. Am. B 9, 1416–1427 (1992). [CrossRef]
  26. H.-J. Eichler, P. Günter, and D. W. Pohl, eds., Laser-Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1986). [CrossRef]
  27. C. Medrano, E. Voit, P. Amrhein, and P. Günter, "Optimization of the photorefractive properties of KNbO3 crystals," J. Appl. Phys. 64, 4668–4673 (1988). [CrossRef]
  28. M. C. Bashaw, M. Jeganathan, and L. Hesselink, "Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit," J. Opt. Soc. Am. B 11, 1743–1757 (1994). [CrossRef]
  29. D. Mahgereften and J. Feinberg, "Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate," Phys. Rev. Lett. 64, 2195–2198 (1990). [CrossRef]
  30. S. Sochava, K. Buse, and E. Krätzig, "Non-steady state photocurrent technique for the characterization of photorefractive BaTiO3," Opt. Commun. 98, 265–268 (1993). [CrossRef]
  31. D. A. Temple, R. S. Hathcock, and C. Warde, "Holographic light scattering in photorefractive materials," in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1987), paper ThB1, p. 122.
  32. We have no information on the anisotropy of the electron mobility.
  33. E. Krätzig and O. F. Schirmer, "Photorefractive centers in electro-optic crystals," in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 131–163. [CrossRef]
  34. E. Krätzig and R. Orlowski, "Light induced charge transport in doped LiNbO3 and LiTaO3," Ferroelectrics 27, 241–244 (1980). [CrossRef]
  35. R. Sommerfeldt, "The influence of further impurities on the photorefractive properties of Fe-doped LiNbO3 crystals," Ph.D. dissertation (University of Osnabrück, Osnabrück, Germany, 1989).
  36. G. A. Brost, K. M. Madge, J. J. Larkin, and T. Harris, "Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment," J. Opt. Soc. Am. B 11, 1764–1772 (1994). [CrossRef]
  37. T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, and K. H. Ringhofer, "Low frequency peculiarities of the photorefractive response in sillenites," Opt. Commun. 113, 371–377 (1995). [CrossRef]
  38. E. Serrano, M. Carrascosa, F. A. López, and L. Solymar, "Subharmonic instability taking into account higher harmonics," Appl. Phys. Lett. 64, 658–660 (1994). [CrossRef]
  39. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).
  40. In crystals with small μτ the frequency shift between the pump beams probably can be replaced by the application of an alternating external field.
  41. V. V. Lemeshko and V. V. Obukhovskii, "Autowaves of photoinduced light scattering," Sov. Tech. Phys. Lett. 11, 573–574 (1985).
  42. I. F. Kanaev, V. K. Malinovski, and B. I. Sturman, "Induced reflection and bleaching effects in electro-optic crystals," Sov. Phys.-JETP 47, 834–837 (1978).
  43. K. R. MacDonald, J. Feinberg, M. Z. Zha, and P. Günter, "Asymmetric transmission through a photorefractive crystal of barium titanate," Opt. Commun. 50, 146–149 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited