OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 12, Iss. 9 — Sep. 1, 1995
  • pp: 1704–1712

Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses

Erkin Sidick, André Knoesen, and Andrew Dienes  »View Author Affiliations


JOSA B, Vol. 12, Issue 9, pp. 1704-1712 (1995)
http://dx.doi.org/10.1364/JOSAB.12.001704


View Full Text Article

Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general theory of second-harmonic generation, including all the effects of group-velocity dispersion, is given for coherent ultrashort pulses with arbitrary shapes and carrier chirps. Ultrashort-pulse second-harmonic generation is analyzed for transform-limited fundamental pulses. The effects of intrapulse group-velocity dispersion (IGVD) on the second-harmonic (SH) pulse shape are investigated for parameters representative of popular phase-matchable crystals and wavelength, including Ti:sapphire lasers. In phase-matched structures IGVD at the SH cannot be neglected for pulses approaching 10 fs. It results in a spectral quadratic phase on the SH and in some cases can shorten the pulse. External dispersive shaping of the SH pulses distorted by group-velocity mismatch (GVM) is examined, and some pulse shortening is found possible. It is shown that the effect of IGVD at the SH wavelength on the pulse is similar to that of the spectral quadratic phase provided by an external pulse shaper. Group-velocity-matched configurations are also investigated. IGVD at both the fundamental and the SH wavelengths is found to limit the optimum thickness of the nonlinear medium. A measure of the interaction length in which the pulse width of the fundamental pulse is preserved in the SH is introduced. It is defined in terms of the GVM and the pulse bandwidth for phase-matched structures and in terms of the IGVD and pulse bandwidths for group-velocity-matched configurations.

© 1995 Optical Society of America

Citation
Erkin Sidick, André Knoesen, and Andrew Dienes, "Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses," J. Opt. Soc. Am. B 12, 1704-1712 (1995)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-12-9-1704


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. H. Knox, M. C. Downer, R. L. Fork, and C. V. Shank, "Amplified femtosecond optical pulses and continuum generation at a 5-kHz repetition rate," Opt. Lett. 9, 552 (1984).
  2. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and J. Schmidt, "Operation of a femtosecond Ti-sapphire solitary laser in the vicinity of zero group-delay dispersion," Opt. Lett. 18, 54 (1993).
  3. M. T. Asaki, C. P. Huang, D. Garvey, J. P. Zhou, H. C. Kapteyn, and M. M. Murnane, "Generation of 11-fs pulses from a self-mode-locked Ti-sapphire laser," Opt. Lett. 18, 977 (1993).
  4. A. Stingl, C. Spielmann, F. Krausz, and R. Szipöcs, "Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms," Opt. Lett. 19, 204 (1994).
  5. J. P. Zhou, G. Taft, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, "Pulse evolution in a broadband Ti:sapphire laser," Opt. Lett. 19, 1149 (1994).
  6. J. Comly and E. Garmire, "Second harmonic generation from short pulses," Appl. Phys. Lett. 12, 7 (1968).
  7. W. H. Glenn, "Second harmonic generation from picosecond pulses," IEEE J. Quantum Electron. QE-5, 284 (1969).
  8. A. M. Weiner, "Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation," IEEE J. Quantum Electron. QE-19, 1276 (1983).
  9. O. E. Martinez, "Achromatic phase matching for second harmonic generation of femtosecond pulses," IEEE J. Quantum Electron. 25, 2464 (1989).
  10. G. Szabó and Z. Bor, "Broadband frequency doubler for femtosecond pulses," Appl. Phys. B 50, 51 (1990).
  11. T. R. Zhang, H. R. Choo, and M. C. Downer, "Phase and group velocity matching for second harmonic generation of femtosecond pulses," Appl. Opt. 29, 3927 (1990).
  12. K. Hayata and M. Koshiba, "Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted β-BaB2O4," Appl. Phys. Lett. 62, 2188 (1993).
  13. E. Sidick, A. Knoesen, and A. Dienes, "Ultrashort pulse second-harmonic generation in quasi-phase-matched dispersive media," Opt. Lett. 19, 266 (1994).
  14. E. Sidick, A. Knoesen, and A. Dienes, "Ultrashort pulse second harmonic generation in optimized nonlinear polymer thin film structures," Intern. J. Nonlin. Opt. Phys. 3, 543 (1994).
  15. E. Sidick, A. Dienes, and A. Knoesen, "Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses," J. Opt. Soc. Am. B 12, 1713 (1995).
  16. G. Khanarian, M. A. Mortazavi, and A. J. East, "Phase-matched 2nd-harmonic generation from free-standing periodically stacked polymer films," Appl. Phys. Lett. 63, 1462 (1993).
  17. M. A. Mortazavi and G. Khanarian, "Quasi-phase-matched frequency doubling in bulk periodic polymeric structures," Opt. Lett. 19, 1290 (1994).
  18. D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, and C. V. Shank, "Generation of 312 nm, femtosecond pulses using a poled copolymer film," IEEE J. Quantum Electron. 28, 2398 (1992).
  19. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, "Nonstationary nonlinear optical effects and ultrashort light pulse formation," IEEE J. Quantum Electron. QE-4, 598 (1968).
  20. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, "Non-stationary phenomena and space-time analogy in nonlinear optics," Sov. Phys. JETP 28, 748 (1969).
  21. R. C. Eckardt and J. Reintjes, "Phase matching limitations of high efficiency second harmonic generation," IEEE J. Quantum Electron. QE-20, 1178 (1984).
  22. J. T. Manassah and O. R. Cockings, "Induced phase modulation of a generated second-harmonic signal," Opt. Lett. 12, 1005 (1987).
  23. N. C. Kothari and X. Carlotti, "Transient second-harmonic generation: influence of effective group-velocity dispersion," J. Opt. Soc. Am. B 5, 756 (1988).
  24. H. J. Bakker, P. C. M. Planken, and H. G. Muller, "Numerical calculation of optical frequency-conversion processes: a new approach," J. Opt. Soc. Am. B 6, 1665 (1989).
  25. R. A. Fisher and W. K. Bischel, "Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses," J. Appl. Phys. 46, 4921 (1975).
  26. F. Zernike, Jr., "Refractive indices of ammonium dihydrogen phosphate and potassium dihydrogen phosphate between 2000 Å and 1.5 μ," J. Opt. Soc. Am. 54, 1215 (1964).
  27. B. Wu, N. Chen, C. Chen, D. Deng, and Z. Xu, "Highly efficient ultraviolet generation at 355 nm in LiB3O5," Opt. Lett. 14, 1080 (1989).
  28. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, "Optical, mechanical, and thermal properties of barium borate," J. Appl. Phys. 62, 1968 (1987).
  29. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), p. 52.
  30. S. Lin, Z. Sun, B. Wu, and C. Chen, "The nonlinear optical characteristics of a LiB3O5 crystal," J. Appl. Phys. 67, 634 (1990).
  31. J. T. Manassah, "Effects of velocity dispersion on a generated second harmonic signal," Appl. Opt. 27, 4365 (1988).
  32. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 8, 1563 (1988).
  33. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 9.
  34. J. D. Harvey, J. M. Dudley, P. F. Curley, C. Spielmann, and F. Krausz, "Coherent effects in a self-mode-locked Ti:sapphire laser," Opt. Lett. 19, 972 (1994).
  35. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. P. Zhou, and C. P. Huang, "Fourth-order dispersion-limited solitary pulses," Opt. Lett. 19, 1465 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited