Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Volume-holographic memory for laser threat discrimination

Not Accessible

Your library or personal account may give you access

Abstract

Using conventional volume-holographic angle multiplexing in an Fe:LiNbO3 crystal, we have developed a compact laser threat discriminator, intended for aircraft integration, that optically detects laser spatial coherence and angle of arrival while simultaneously rejecting incoherent background sources, such as the Sun. The device is intended for a specific type of psychophysical laser attack against U.S. Air Force pilots, namely, third-world-country exploitation of inexpensive and powerful cw Ar-ion or doubled Nd:YAG lasers in the visible spectrum to blind or disorient U.S. pilots. The component does not solve the general tactical laser weapon situation, which includes identifying precision-guided munitions, range finders, and lidar systems that use pulsed infrared lasers. These are fundamentally different threats requiring different detector solutions. The device incorporates a sequence of highly redundant, simple black-and-white warning patterns that are keyed to be reconstructed as the incident laser threat, playing the role of an uncooperative probe beam, changes angle with respect to the crystal. The device tracks both azimuth and elevation, using a nonconventional hologram viewing system. Recording and playback conditions are simplified because nonzero cross talk is a desirable feature of this discriminator, inasmuch as our application requires a nonzero probability of detection for arbitrary directions of arrival within the sensor’s field of view. The device can exploit phase-matched grating trade-off with probe-beam wavelength, accommodating wavelength-tunable threats, while still maintaining high direction-of-arrival tracking accuracy.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Absorption effects in photorefractive volume-holographic memory systems. II. Material heating

Scott Campbell, Shiuan-Huei Lin, Xianmin Yi, and Pochi Yeh
J. Opt. Soc. Am. B 13(10) 2218-2228 (1996)

Absorption effects in photorefractive volume-holographic memory systems. I. Beam depletion

Scott Campbell, Shiuan-Huei Lin, Xianmin Yi, and Pochi Yeh
J. Opt. Soc. Am. B 13(10) 2209-2217 (1996)

Sparse-wavelength angle-multiplexed volume holographic memory system: analysis and advances

Scott Campbell and Pochi Yeh
Appl. Opt. 35(14) 2380-2388 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved