OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 13, Iss. 11 — Nov. 1, 1996
  • pp: 2513–2523

Holographic storage dynamics in lithium niobate: theory and experiment

Amnon Yariv, Sergei S. Orlov, and George A. Rakuljic  »View Author Affiliations


JOSA B, Vol. 13, Issue 11, pp. 2513-2523 (1996)
http://dx.doi.org/10.1364/JOSAB.13.002513


View Full Text Article

Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical model that describes holographic ionic fixing and storage dynamics in photorefractive crystals. Holographic gratings that are based on charge redistribution inevitably decay because of ionic and electronic conduction. Relevant decay rates and transient hologram field expressions are derived. Ionic gratings are partially screened by trapped electrons on readout. The lifetimes of fixed ionic holograms are limited by the finite ionic conductivity at low (i.e., room) temperatures. Only under certain and restricted conditions can these decay times be acceptably long. A significant increase in fixed ionic hologram lifetime is realized in lithium niobate with a low hydrogen-impurity content. The residual ionic conductivity (decay-time constant) in these samples exhibits ~1.4-eV activation energy and is not due to protonic conduction. Fixed hologram lifetimes of ~2 years at room temperature in dehydrated lithium niobate crystals are projected.

© 1996 Optical Society of America

Citation
Amnon Yariv, Sergei S. Orlov, and George A. Rakuljic, "Holographic storage dynamics in lithium niobate: theory and experiment," J. Opt. Soc. Am. B 13, 2513-2523 (1996)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-13-11-2513


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752(1994).
  2. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76(1995).
  3. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203(1995).
  4. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542(1971).
  5. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81(1972).
  6. D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522(1991).
  7. G. Montemezzani and P. Günter, “Thermal hologram fixing in pure and doped KNbO3/sub> crystals,” J. Opt. Soc. Am. B 7, 2323–2328(1990).
  8. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperature and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185(1993).
  9. A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336(1995).
  10. S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468(1993).
  11. M. Carrascosa and F. Agullo-Lopez, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322(1990).
  12. R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565(1988).
  13. V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851(1979).
  14. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862(1987).
  15. N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440(1976).
  16. W. Bollmann, “Diffusion of hydrogen (OH ions) in LiNbO3/sub> crystals,” Phys. Status Solidi A 104, 643–648(1987).
  17. C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172(1991).
  18. W. Bollmann and H. J. Stöhr, “Incorporation and mobility of OH ions in LiNbO3/sub> crystals,” Phys. Status Solidi A 39, 477–484(1977).
  19. H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545(1981).
  20. L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406(1991).
  21. M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713(1993).
  22. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312(1995).
  23. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200(1991).
  24. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687(1994).
  25. S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799(1992).
  26. J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH defects in LiNbO3,” Solid State Commun. 12, 351–354(1973).
  27. A. Yariv, V. Leyva, and G. A. Rakuljic, “Relaxation and lifetime of ‘fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications (Institute of Electrical and Electronics Engineers, New York, 1994), postdeadline paper PD6.
  28. G. A. Rakuljic and A. Yariv, “Photorefractive systems and methods,” U. S. patent 5,440,669 (August 8, 1995).
  29. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184(1975).
  30. A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854(1991).
  31. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879(1992).
  32. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473(1992).
  33. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. Sect. B 42, 61–68(1986).
  34. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620(1993).
  35. L. Kovàcs and K. Polgar, in Properties of Lithium Niobate, Vol. 5 of Electronic Materials Information Service Data Review Series (Institution of Electrical Engineers, London, 1989), p. 109.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited