OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 13, Iss. 6 — Jun. 1, 1996
  • pp: 1135–1146

Numerical solutions of Maxwell's equations for nonlinear-optical pulse propagation

Cheryl V. Hile and William L. Kath  »View Author Affiliations


JOSA B, Vol. 13, Issue 6, pp. 1135-1146 (1996)
http://dx.doi.org/10.1364/JOSAB.13.001135


View Full Text Article

Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model and numerical solutions of Maxwell's equations describing the propagation of short, solitonlike pulses in nonlinear dispersive optical media are presented. The model includes linear dispersion expressed in the time domain, a Kerr nonlinearity, and a coordinate system moving with the group velocity of the pulse. Numerical solutions of Maxwell's equations are presented for circularly polarized and linearly polarized electromagnetic fields. When the electromagnetic fields are assumed to be circularly polarized, numerical solutions are compared directly with solutions of the nonlinear Schrödinger (NLS) equation. These comparisons show good agreement and indicate that the NLS equation provides an excellent model for short-pulse propagation. When the electromagnetic fields are assumed to be linearly polarized, the propagation of daughter pulses, small-amplitude pulses at three times the frequency of the solitonlike pulse, are observed in the numerical solution. These daughter pulses are shown to be the direct result of third harmonics generated by the main, solitonlike, pulse.

© 1996 Optical Society of America

Citation
Cheryl V. Hile and William L. Kath, "Numerical solutions of Maxwell's equations for nonlinear-optical pulse propagation," J. Opt. Soc. Am. B 13, 1135-1146 (1996)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-13-6-1135

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited