OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 1 — Jan. 1, 1997
  • pp: 17–20

Interband critical-point line shapes in confined semiconductor structures with arbitrary dimensionality: inhomogeneous broadening

Xing-Fei He  »View Author Affiliations

JOSA B, Vol. 14, Issue 1, pp. 17-20 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interband optical transitions near van Hove critical points in semiconductor structures with restricted geometry are studied in the framework of fractional dimensionality in the case of inhomogeneous broadening. The spectral line shapes were derived based on the w function, which is the envelope of the individual homogeneous packets. Similar to the case of homogeneous broadening, the dimensionality, band gaps, and linewidths can be straightforwardly determined by use of fractional differentiation, which converts the line shapes to symmetric profiles. The results show that crystal potential fluctuation plays an important role in the interband optical transitions, and the total linewidth should be accounted for by both phonon processes and crystal strain.

© 1997 Optical Society of America

Xing-Fei He, "Interband critical-point line shapes in confined semiconductor structures with arbitrary dimensionality: inhomogeneous broadening," J. Opt. Soc. Am. B 14, 17-20 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, Spectroscopic Characterization Techniques for Semiconductor Technology III, Proc. SPIE 946, 84 (1988).
  2. M. Cardona, Modulation Spectroscopy (Academic, New York, 1969).
  3. D. E. Aspnes, Surf. Sci., 135, 284 (1983). [CrossRef]
  4. For a review, see D. E. Aspnes, in Optical Properties of Solids: New Developments, B. O. Seraphin, ed. (North-Holland, Amsterdam, 1976), p. 799.
  5. S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, Phys. Rev. B 26, 6669 (1982). [CrossRef]
  6. H. Arwin and D. E. Aspnes, J. Vac. Sci. Technol. A 2, 1316 (1984). [CrossRef]
  7. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987). [CrossRef]
  8. M. Erman, J. P. Andre, and J. LeBris, J. Appl. Phys. 59, 2019 (1986). [CrossRef]
  9. M. Erman, C. Alibert, J. B. Theeten, P. Frijlink, and B. Catte, J. Appl. Phys. 63, 465 (1988). [CrossRef]
  10. U. Schmid, J. Humlicek, F. Lukes, M. Cardona, H. Presting, H. Kibbel, E. Kasper, K. Eberl, W. Wegscheider, and G. Abstreiter, Phys. Rev. B 45, 6793 (1992). [CrossRef]
  11. X.-F. He, Solid State Commun. 75, 111 (1990). [CrossRef]
  12. X.-F. He, Phys. Rev. B 42, 11751 (1990). [CrossRef]
  13. X.-F. He, R.-R. Jiang, and D. Mo, Phys. Rev. B 41, 5799 (1990). [CrossRef]
  14. D. Mo, Y.-Y. Lin, J.-H. Tan, Z.-X. Yu, G.-Z. Zhou, K.-C. Gong, G.-P. Zhang, and X.-F. He, Thin Solid Films 234, 468 (1993). [CrossRef]
  15. X.-F. He, in Proceedings of the 22nd International Conference on Physics of Semiconductors, D. J. Lockwood, ed. (World Scientific, Singapore, 1995), p. 281.
  16. X.-F. He, Phys. Rev. B 43, 2063 (1991). [CrossRef]
  17. H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B 46, 4092 (1992). [CrossRef]
  18. P. Lefebvre, P. Christol, and H. Mathieu, Phys. Rev. B 46, 13603 (1992). [CrossRef]
  19. P. Lefebvre, P. Christol, and H. Mathieu, Phys. Rev. B 48, 17308 (1993). [CrossRef]
  20. P. Christol, P. Lefebvre, and H. Mathieu, J. Appl. Phys. 74, 5626 (1993). [CrossRef]
  21. B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966). [CrossRef]
  22. H. Shen, X. C. Shen, F. H. Pollack, and R. N. Sacks, Phys. Rev. B 36, 3487 (1987). [CrossRef]
  23. J. W. Carland, H. Adad, M. Viccaro, and P. M. Raccah, Appl. Phys. Lett. 52, 1176 (1988). [CrossRef]
  24. P. Lautenschlager, P. B. Allen, and M. Cardona, Phys. Rev. B 33, 5501 (1986). [CrossRef]
  25. S. Zollner, S. Gopalan, M. Garriga, J. Humlicek, L. Vina, and M. Cardona, Appl. Phys. Lett. 57, 2838 (1990). [CrossRef]
  26. K. B. Oldham and J. Spanier, The Fractional Calculus (Academic, New York, 1974).
  27. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965), p. 297.
  28. See, for example, Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited