OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2463–2468

Atomic transitions for the Ar VII spectrum in the vacuum ultraviolet

A. G. Trigueiros, A. J. Mania, M. Gallardo, and J. G. Reyna Almandos  »View Author Affiliations

JOSA B, Vol. 14, Issue 10, pp. 2463-2468 (1997)

View Full Text Article

Acrobat PDF (203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two different spectroscopy light sources are used to observe the spectrum of six-times-ionized argon, Ar VII, in the vacuum ultraviolet range, 300–1100 Å. Fifty-eight transitions are identified as combinations between levels of the 2p6 (3s2 + 3p2 + 3s3d) and 2p6(3s3p + 3p3d + 3s4p) configurations. For 44 of these transitions the classificationis new. Twenty-nine levels are determined that belong to these configurations, where 14 of these are new. The energy parameters are obtained with Hartree–Fock relativistic calculations. The energy levels of the configurations are interpreted by fitting the theoretical energy expressions to the experimental levels with the least-squares approach. Isoelectronic comparisons along the Mg I sequence are used to support the experimental results.

© 1997 Optical Society of America

A. G. Trigueiros, A. J. Mania, M. Gallardo, and J. G. Reyna Almandos, "Atomic transitions for the Ar VII spectrum in the vacuum ultraviolet," J. Opt. Soc. Am. B 14, 2463-2468 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. W. Philips and W. L. Parker, “Spectra of argon in the extreme ultraviolet,” Phys. Rev. 60, 301–307 (1941).
  2. C. E. Moore, “Atomic Energy Levels,” Natl. Bur.Stand., Ref. Data Ser., Circ. No. 467 (U.S. GOP, Washington, D.C., 1971), Vol. I and Vol. II.
  3. K. Rahimullah, P. Tavella, C. Novero, and A. Godone, “Asemi-theoretical calculation of 3s3p fine-structure splittingin Mg I using asymptotic value of quantum defect,”Nuovo Cimento 15, 1113–1121 (1993).
  4. A. Hibbert and F. P. Keenan, “Oscillator strengths for intercombination and forbidden transitionsamongst the 3s2 and 3s3plevels in Al II,” J. Phys. B 20, 4693–4697 (1987).
  5. P.-O. Zetterberg and C.-E. Magnusson, “The spectrum and term system of P IV,” Phys. Scr. 15, 189–201 (1977).
  6. I. Joelsson, P.-O. Zetterberg, and C.-E. Magnusson, “The spectrum and term system of S V,” Phys. Scr. 23, 1087–1095 (1981).
  7. K. L. Baluja and M. Mohan, “Electron impact excitation of forbidden and allowed transitions inCl VI,” J. Phys. B 20, 831–838 (1987).
  8. J.-O. Ekberg, “Analyses of the Mg I-like spectra K VIII, Ca IX, Sc X and Ti XI,” Phys. Scr. 4, 101–109 (1971).
  9. S. S. Churilov, E. Y. Kononov, A. H. Ryabtsev, and Y. F. Zayikin, “A detailed analysis of the n=3–n=3 transitions in the Mg-like ions Fe XV, Co XVI, and Ni XVII,” Phys. Scr. 32, 501–503 (1985).
  10. U. Litzén and A. Redfors, “Revised and extended analysis of transitions and energy levels in the n=3 complex of Mg-like Ca IX–Ge XXI,” Phys. Scr. 36, 895–903 (1987).
  11. J. Sugar and V. Kaufman, “Copper spectra in a laser-generated plasma: measurements and classificationsof Cu XII to Cu XXI,” J. Opt. Soc. Am. B 3, 704–710 (1986).
  12. J. Sugar and V. Kaufman, “Mg-like spectrum of Cu XVIII,” J. Opt. Soc. Am. B 3, 1612–1612 (1986).
  13. J. Sugar and V. Kaufman, “Additions and revisions to the levels of magnesium-like Cu XVIII and Zn XIX,” J. Opt. Soc. Am. B 4, 2010–2011 (1988).
  14. A. Redfors, “The 3d2 configuration in Ca IX–Zn XIX,” Phys. Scr. 38, 702–706 (1988).
  15. V. E. Levashov, “Spectra of n=3–n=3 transitionsin K VIII, Ca IX, and Ti XI magnesium-like ions,” Opt. Spectrosc. 66, 449–451 (1989).
  16. S. S. Churilov, V. E. Levashov, and J. F. Wyart, “Extended analysis of the 3d2–3p3d transitionsin the sequence K VIII–Cu XVIII and isoelectronic trends in Ma-like ions through Kr XXV,” Phys. Scr. 40, 625–633 (1989).
  17. J. Sugar, V. Kaufman, and W. L. Rowan, “Resonances transitions in the Mg I andAr I isoelectronic sequences from Cu to Mo,” J. Opt. Soc. Am. B 4, 1927–1930 (1987).
  18. J. Sugar, V. Kaufman, P. Indelicato, and W. L. Rowan, “Analysis of magnesium spectra from Cu XVIIIto Mo XXXI,” J. Opt. Soc. Am. B 6, 1437–1443 (1989).
  19. M.-C. Buchet-Poulizac, J. P. Buchet, and P. Ceyzeriat, “Spectroscopie et durees de vie dans Ar VI–VIII,” Nucl. Instr. Methods Phys. Res. 202, 13–18 (1982).
  20. I. Lesteven-Vai ¨sse, F. Folkmann, A. Ben Sitel, M. Chantepie, and D. Lecler, “High resolution V. U. V. spectroscopy of argon recoil ions inducedby an ion beam,” Phys. Scr. 38, 45–54 (1988).
  21. G. Lève⁁que, S. Girard, and J. Robin, “Emissionspectrum of highly ionized argon in the 100 to 900 Å range,” J.Phys. 45, 665–670 (1984).
  22. B. C. Fawcett, A. Ridgeley, and G. E. Bromage, “The spectrum Ar IX and extended spectralclassification in Ar V to Ar VIII and Ar X,” Phys. Scr. 18, 315–322 (1987).
  23. A. E. Livingston, E. H. Pinnington, D. J. G. Irwin, J. A. Kernahan, and R. L. Brooks, “Energies and lifetimes of excited atomic states in Ar V–Ar VIII,” J. Opt. Soc. Am. 71, 442–447 (1981).
  24. J. Reader, “3s2–3s3p and 3s3p–3s3d transitions in magnesium-like ions from Sr26+ to Rh 33+,” J. Opt. Soc. Am. 73, 796–799 (1983).
  25. J.-O. Ekberg, U. Feldman, J. F. Seely, C. M. Brown, B. J. MacGowan, D. R. Kania, and C. J. Keane, “Analysis of magnesiumlike spectra from Mo XXXI to Cs XLIV,” Phys. Scr. 43, 19–32 (1991).
  26. C. Jupén, B. Denne, and I. Martinson, “Transitions in Al-like, Mg-like and Na-like Kr and Mo, observed inthe JET Tokamak,” Phys. Scr. 41, 669–674 (1990).
  27. C. Froese-Fischer and M. Godefroid, “Lifetime trends for the n=3 singlet states in theMg sequence,” Nucl. Instr. Methods Phys. Res. 202, 307–322 (1982).
  28. C. Froese-Fischer and M. Godefroid, “Short-range interactions involving plunging configurations of the n=3 complex in the Mg sequence,” Phys. Scr. 25, 394–400 (1982).
  29. N. Reistad, T. Brage, J.-O. Ekberg, and L. Engström, “J-dependent 3s4p 3Pjlifetimes in Mg-like sulfur and chlorine,” Phys. Scr. 30, 249–254 (1984).
  30. K. L. Baluja and A. Hibbert, “Energies and oscillator strengths for allowed transitions in S V, Cl VI, and Fe XV,” Nucl. Instr. Methods Phys. Res. B 9, 477–486 (1985).
  31. K. Aashamar, T. M. Luke, and J. D. Talman, “Energy levels in the magnesium sequence, Mg I–Mn XIV, calculated in the multiconfigurationoptimized potential model,” Phys. Scr. 34, 386–393 (1986).
  32. B. C. Fawcett, “Calculated oscillator strengths and wavelengths for allowed transitionswithin the third shell for ions in the Mg-like isoelectronic sequence betweenS V and Ni XVII,” At. Data Nucl. Data Tables 28, 579–596 (1983).
  33. B. C. Fawcett, “Calculated oscillator strengths, wavelengths and energy levels forallowed 3–3 and 3–4 transitions for Fe XV with isoelectronic comparisons between Dirac–Fock and Hartree–Fock,” Phys. Scr. 34, 331–336 (1986).
  34. T. Brage and A. Hibbert, “Plunging configurations and J-dependent lifetimesin Mg-like ions,” J. Phys. B 22, 713–726 (1989).
  35. A. G. Trigueiros, M. Machida, C. J. B. Pagan, and J. G. Reyna Almandos, “A spectroscopic study of radiation produced in a theta-pinch,” Nucl. Instr. Methods Phys. Res. A 280, 589–592 (1989).
  36. M. Gallardo, F. Bredice, M. Raineri, and J. G. Reyna Almandos, “Light source for obtaining spectra of highly ionized gases,” Appl. Opt. 28, 4513–4515 (1989).
  37. R. D. Cowan, The Theory of Atomic Structureand Spectra (University of California, Berkeley, 1981).
  38. B. Edlén, in Encyclopedia of Physics, S. Flügge, ed. (Springer, Berlin, 1964), Vol. 27, p. 80.
  39. L. Curtis and Ramanujam, “Isoelectronic wavelength predictions for magnetic-dipole, electric-quadrupole, and intercombination transitions in the Mg sequence,” J. Opt. Soc. Am. 73, 979–984 (1983).
  40. N. J. Peacock, M. F. Stamp, and J. D. Silver, “Highly-ionized atoms in fusion research plasma,” Phys. Scr. T8, 10–20 (1984).
  41. E. Träbert, R. Hutton, L. Engström, S. L. Bliman, H. G. Berry, and C. Kurtz, “Delayed beam–foil spectra of 3 MeV Ar ions,” Phys. Lett. A 129, 381–385 (1988).
  42. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 Å: hydrogen troughkrypton, part I (H–Ar),” J. Phys. Chem. Ref. Data Suppl. 1, 401–408 (1987).
  43. R. Hutton, University of Lund, 22362 Lund, Sweden (personalcommunication, 1997).
  44. Ö. Andersson, “A method for atomic spectroscopyof highly charged ions in the Pm isoelectronic sequence,” Master's Thesis(University of Lund, Lund, Sweden, 1995).
  45. S. Bliman, J. P. Desclaux, D. Hitz, P. Indelicato, and P. Marseille, “Collision aspects and spectroscopy of higher states in magnesium-likeargon,” Nucl. Instr. Methods Phys. Res. B 31, 330–335 (1988).
  46. S. Bliman, P. Indelicato, D. Hitz, P. Marseille, and J. P. Desclaux, “One-electron and two-electron-one photon electric dipole transitionsin the Mg-Like argon spectrum,” J. Phys. B 22, 2741–2749 (1989).
  47. P. Boduch, M. Chantepie, D. Hennecart, X. Husson, H. Kucal, D. Lecler, and N. Stolterfoht, “Spectroscopic analysis of visible and near UV light emitted by Ar7+ and Ar6+ ions produced in Ar8+–He and Ar8+–H2collisions at 120 keV,” Phys. Scr. 45, 203–211 (1992).
  48. L. J. Radziemski and V. Kaufman, “Wavelengths, energy levels, and analysis of neutral atomic chlorine(Cl I),” J. Opt. Soc. Am. 59, 424–443 (1969).
  49. Optimization of the energy level values was done with thecomputer program ELCALC, provided by L. J. Radziemski, Jr., Los Alamos NationalLaboratory, Los Alamos, N. M. 87544.
  50. A. G. Trigueiros and A. J. Mania, UNICAMP Rep. Atomic MolecularPhys., “Hartree–Fock and fit energy parameters for the Ar VII spectrum,” 2, 1996 (UNICAMP, São Paulo, Brazil).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited