OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2481–2497

Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider

J.-J. Zondy, D. Touahri, and O. Acef  »View Author Affiliations

JOSA B, Vol. 14, Issue 10, pp. 2481-2497 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the measurement of the absolute d36 nonlinear coefficient of silver gallium sulfide (AgGaS2) from three phase-matched nonlinear interactions spanning from 10.2 to 0.78 µm: the sum-frequency of a CO2 laser (10.2 µm) and a near-IR AlGaAs diode laser (0.842 µm), the second-harmonic generation of a KCl:Li color-center laser (2.53 µm), and the noncritically phase-matched 3ω-ω2ω difference frequency between the AlGaAs diode laser and the KCl:Li laser to generate 1.265 µm. From the theoretical evaluation of the Gaussian-beam aperture functions for these type I interactions with arbitrary focusing parameters, beam-waist locations, and absorption losses, we have deduced from the three processes the same consistent value d36=13(±2) pm/V for AgGaS2. Our value is independent of the growth origin of the material. In light of the trustworthy value of d36 measured from our experiments we analyze the feasibility of a continuous-wave doubly resonant parametric oscillator-(DRO-)based 3:1 frequency divider pumped by a near-IR diode laser. The predicted pump power threshold for the ring-resonator DRO lies in the range of 70–140 mW for a 14–18-mm-long sample with an absorption loss near the level of 1% cm-1 at the output frequencies.

© 1997 Optical Society of America

J.-J. Zondy, D. Touahri, and O. Acef, "Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider," J. Opt. Soc. Am. B 14, 2481-2497 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997). [CrossRef]
  2. J.-J. Zondy, D. Touahri, and O. Acef, “Infra-red tovisible non-linear up and down conversion processes using AgGaS2 crystals,” in Advanced Solid State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 164–167.
  3. J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω− ω→2ω infrared parametricamplification,” J. Opt. Soc. Am. B 14, 1331 (1997). [CrossRef]
  4. N. C. Wong, “Optical-to-microwave frequency chain utilizing a two-laser-based opticalparametric oscillator network,” Appl. Phys. B 61, 143 (1995). [CrossRef]
  5. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristicsof AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992). [CrossRef]
  6. D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971). [CrossRef]
  7. P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I: nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540 (1974). [CrossRef]
  8. H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear coefficients of KTiOPO4,” Opt. Lett. 17, 982 (1992). [CrossRef] [PubMed]
  9. B. Boulanger, J. Ph. Fève, G. Marnier, B. Ménaert, and X. Cabirol, “Relative sign and absolute magnitude of the χ(2) coefficients of KTP by SHG measurements,” J. Opt. Soc. Am. B 11, 750 (1994). [CrossRef]
  10. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μmin flux grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994). [CrossRef]
  11. R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinearinfrared applications,” Opt. Eng. 26, 113 (1987). [CrossRef]
  12. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beam,” Phys. Rev. 145, 338 (1966). [CrossRef]
  13. S. Guha and J. Falk, “The effect of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51, 50 (1980). [CrossRef]
  14. G. Lera and M. Nieto-Vesperinas, “Non-paraxial method for non-linear optical problems: far-infrared generationwith depletion and diffraction,” J. Opt. 20, 169 (1989). [CrossRef]
  15. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonicgeneration,” IEEE J. Quantum Electron. 26, 922 (1990). [CrossRef]
  16. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968). [CrossRef]
  17. J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I secondharmonic generation with Gaussian beams,” Opt. Commun. 81, 427 (1991); erratum, in Eq. (3.1.a), exp(−x2) should read exp(−x2/2). [CrossRef]
  18. J.-P. Fève, B. Boulanger, and G. Marnier, “Experimental study of walk-off attenuation for type-II second-harmonicgeneration in KTP,” IEEE J. Quantum Electron. 31, 1569 (1995). [CrossRef]
  19. B. Boulanger, J.-P. Fève, G. Marnier, C. Bonnin, P. Villeval, and J.-J. Zondy, “Absolute measurement of quadratic nonlinearities from phase-matchedsecond-harmonic generation in a single KTP crystal cut in a sphere,” J. Opt. Soc. Am. B 14, 1380 (1997). [CrossRef]
  20. D. Touahri, O. Acef, and J.-J. Zondy, “30-THz upconversion of an AlGaAs diode laser with AgGaS2: bridging the several-terahertzfrequency gap in the near infrared,” Opt. Lett. 21, 213 (1996). [CrossRef] [PubMed]
  21. T.-B. Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photonsand using Gaussian laser beams,” J. Phys. (France) 46, 523 (1985). [CrossRef]
  22. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequencygeneration in AgGaS2for high resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992). [CrossRef]
  23. J. E. Bjorkholm, “Analysis of the doubly resonant optical parametric oscillator withoutpower-dependent reflections,” IEEE J. Quantum Electron. QE-5, 293 (1969). [CrossRef]
  24. S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982). [CrossRef]
  25. The SHG sample was grown at the Institute of Mineralogy andPetrography, Russian Academy of Sciences, Siberian Branch, Novosibirsk (Russia)and manufactured by EKSMA Co., Vilnius (Lithuania).
  26. J.-J. Zondy, M. Abed, and S. Khodja, “Twin-crystal walk-off-compensated type-II second-harmonic generation:single-pass and cavity-enhanced experiments in KTiOPO4,” J. Opt. Soc. Am. B 11, 2368 (1994). [CrossRef]
  27. SFG and DFG samples were grown and manufactured by ClevelandCrystals, Inc., Ohio.
  28. U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062 (1993). [CrossRef]
  29. U. Simon, S. Waltman, I. Loa, F. K. Tittel, and L. Hollberg, “External-cavity difference frequency source near 3.3 μm, basedon combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323 (1995). [CrossRef]
  30. E.-J. Canto-Said, M. P. McCann, P. G. Wigley, and G. J. Dixon, “Broadly tunable mid-infrared intracavity difference-frequency laser,” Opt. Lett. 20, 1268 (1995). [CrossRef] [PubMed]
  31. H.-D. Kronfeldt, G. Basar, and B. Sumpf, “Application of a cw tunable infrared spectrometer based on difference-frequencygeneration in AgGaS2for self-broadening investigations of NO at μm,” J. Opt. Soc. Am. B 13, 1859 (1996). [CrossRef]
  32. R. C. Miller, “Optical second-harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17 (1964). [CrossRef]
  33. K. Kato, “High-power difference frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984). [CrossRef]
  34. A. G. Yodh, H. W. K. Tom, G. D. Aumillier, and R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses pulses pulsesat 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991). [CrossRef]
  35. G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2 andtheory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971). [CrossRef]
  36. E. C. Cheung, K. Koch, and G. T. Moore, “Measurement of second-order nonlinear optical coefficients from thespectral brightness of parametric fluorescence,” Opt. Lett. 19, 168 (1994). [CrossRef]
  37. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurement of visible and infrarednonlinear crystals,” Phys. Rev. B 14, 1693 (1974). [CrossRef]
  38. K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, “Hot spots in parametric fluorescence with a pump beam of finite cross-section,” IEEE J. Quantum Electron. 31, 769 (1995). [CrossRef]
  39. Absorption loss as low as 0.55–0.65%/cm hasbeen measured from laser calorimetry at 1.064 μm on some specificallyhigh-quality AGS samples. G. Catella, Cleveland Crystals Inc., Cleveland, Ohio, and R. Kondrotas, EKSMA Co., Vilnius, Lithuania (personal communication).
  40. A. Haraski and K. Kato, “New data on the nonlinear optical constant, phase-matching and opticaldamage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited