OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2505–2512

Sum-frequency spectroscopy in total internal reflection geometry: signal enhancement and access to molecular properties

J. Löbau and K. Wolfrum  »View Author Affiliations


JOSA B, Vol. 14, Issue 10, pp. 2505-2512 (1997)
http://dx.doi.org/10.1364/JOSAB.14.002505


View Full Text Article

Acrobat PDF (260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The angular dependence of the sum-frequency signal radiated in a total internal reflection geometry is studied both theoretically and experimentally for a monolayer of octadecyl trichlorosilane chemisorbed upon CaF2. A predicted signal enhancement of 2 orders of magnitude is verified experimentally. The line amplitudes ofthe CH-stretching modes of the terminal methyl group depend strongly on the polarization geometry, the molecular hyperpolarizability, and the angles of incidence of the fundamental waves. By exploiting both the angular and the polarization dependence of the line amplitudes, one can obtain the molecularproperties unambiguously. The hyperpolarizability tensor elements of the terminalmethyl group are determined directly from the sum-frequency spectra.

© 1997 Optical Society of America

Citation
J. Löbau and K. Wolfrum, "Sum-frequency spectroscopy in total internal reflection geometry: signal enhancement and access to molecular properties," J. Opt. Soc. Am. B 14, 2505-2512 (1997)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-10-2505


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. R. Shen, Appl. Phys. A 59, 541 (1994), and references therein.
  2. K. B. Eisenthal, Chem. Rev. 96, 1343 (1996), and references therein.
  3. B. U. Felderhof, A. Bratz, G. Marowsky, O. Roders, and F. Sieverdes, J. Opt. Soc. Am. B 10, 1824 (1993); 11, 394 (1994).
  4. J. C. Conboy, J. L. Daschbach, and G. L. Richmond, Appl. Phys. A 59, 623 (1994).
  5. F. Geiger, R. Stolle, G. Marowsky, M. Palenberg, and B. U. Felderhof, Appl. Phys. B 61, 135 (1995).
  6. S. R. Hatch, R. S. Polizzotti, S. Dougal, and P. Rabinowitz, Chem. Phys. Lett. 196, 97 (1992).
  7. J. C. Conboy, J. L. Daschbach, and G. L. Richmond, J. Phys. Chem. 98, 9688 (1994).
  8. J. C. Conboy, M. C. Messmer, and G. L. Richmond, J. Phys. Chem. 100, 7617 (1996).
  9. B. U. Felderhof and G. Marowsky, Appl. Phys. B 43, 161 (1987).
  10. B. U. Felderhof and G. Marowsky, Appl. Phys. B 44, 11 (1987).
  11. T. F. Heinz, “Second-order nonlinear optical effectsat surfaces and interfaces,” in Nonlinear Surface ElectromagneticPhenomena, H.-E. Ponath and G. I. Stegeman, eds. (Elsevier, Amsterdam, 1991), pp. 353–360.
  12. N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
  13. P. Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 35, 4420 (1987).
  14. K. Wolfrum and A. Laubereau, Chem. Phys. Lett. 228, 83 (1994).
  15. P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, Chem. Phys. Lett. 144, 1 (1988).
  16. C. Hirose, N. Akamatsu, and K. Domen, J. Chem. Phys. 96, 997 (1992).
  17. C. Hirose, N. Akamatsu, and K. Domen, Appl. Spectrosc. 46, 1051 (1992).
  18. R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang, and H. Seki, Phys. Rev. B 54, 8243 (1996).
  19. K. Wolfrum, H. Graener, and A. Laubereau, Chem. Phys. Lett. 213, 41 (1993).
  20. K. Wolfrum, R. Laenen, and A. Laubereau, Opt. Commun. 97, 41 (1993).
  21. F. Lindenberger, R. Stöckl, R. Laenen, and A. Laubereau, Opt. Commun. 117, 268 (1995).
  22. J. Sagiv, J. Am. Chem. Soc. 102, 92 (1980).
  23. J. Löbau, A. Rumphorst, K. Galla, S. Seeger, and K. Wolfrum, Thin Solid Films 289, 272 (1996).
  24. F. J. Boerio and S. L. Chen, J. Colloid Interface Sci. 73, 176 (1980).
  25. P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1987).
  26. J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta 19, 117 (1963).
  27. R. Superfine, J. Y. Huang, and Y. R. Shen, Phys. Rev. Lett. 66, 1066 (1991).
  28. M. J. Colles and J. E. Griffith, J. Chem. Phys. 56, 3384 (1972).
  29. P. Ye and Y. R. Shen, Phys. Rev. B 28, 4288 (1983).
  30. G. L. Gaines, Insoluble Monolayers at Liquid–GasInterfaces (Wiley, New York, 1966).
  31. M. Morin, P. Jakob, N. J. Levinos, Y. J. Chabal, and A. L. Harris, J. Chem. Phys. 96, 6203 (1992).
  32. M. Morin, N. J. Levinos, and A. L. Harris, J. Chem. Phys. 96, 3950 (1992).
  33. P. Guyot-Sionnest, Phys. Rev. Lett. 66, 1489 (1991).
  34. A. Peremans, A. Tadjeddine, and P. Guyot-Sionnest, Chem. Phys. Lett. 247, 243 (1995).
  35. M. E. Schmidt and P. Guyot-Sionnest, J. Chem. Phys. 104, 2438 (1995).
  36. K. Wolfrum, J. Löbau, W. Birkhölzer, and A. Laubereau, Quantum Semiclassic. Opt. 9, 257 (1997).
  37. J. Löbau, K. Wolfrum, and A. Laubereau, “Relaxationand energy transfer in CH-stretching vibrations of octadecyl trichlorosilaneon surfaces, studied with two-color pump-probe sum-frequency spectroscopy,”submitted to J. Chem. Phys.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited