OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2522–2529

Reciprocity method for obtaining the far fields generated by a source inside or near a microparticle

Steven C. Hill, Gorden Videen, and J. David Pendleton  »View Author Affiliations


JOSA B, Vol. 14, Issue 10, pp. 2522-2529 (1997)
http://dx.doi.org/10.1364/JOSAB.14.002522


View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the far fields generated by a source inside or near a microparticle can be obtained readily by using the reciprocity theorem along with the internal or near fields generated by plane-wave illumination. This method is useful for solving problems for which the scattered fields generated with plane-wave illumination have already been obtained. We illustrate the method for the case of a homogeneous sphere and then apply it to the problem of emission from a dipole inside a sphere that is near a plane interface.

© 1997 Optical Society of America

Citation
Steven C. Hill, Gorden Videen, and J. David Pendleton, "Reciprocity method for obtaining the far fields generated by a source inside or near a microparticle," J. Opt. Soc. Am. B 14, 2522-2529 (1997)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-10-2522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observations of structure resonances in the fluorescence emission frommicrospheres,” Phys. Rev. Lett. 44, 475–478 (1980). [CrossRef]
  2. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996). [CrossRef] [PubMed]
  3. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996). [CrossRef] [PubMed]
  4. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, andS. Arnold, “Molecular fluorescence in a microcavity: solvation dynamicsand single molecule detection,” in Optical Processesin Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.
  5. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitatedliquid droplets,” Appl. Opt. 24, 1515–1519 (1985). [CrossRef]
  6. M. F. Buehler, T. M. Allen, and E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991). [CrossRef]
  7. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths correspondingto morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984). [CrossRef] [PubMed]
  8. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  9. H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992). [CrossRef]
  10. J. L. Cheung, J. M. Hartings, and R. K. Chang, “Nonlinearoptics of microdroplets illuminated by picosecond laser pulses,” in Handbook of Optical Properties, Vol. 2 of Optics of SmallParticles, Interfaces, and Surfaces, R. E. Hummel and P. Wissman, eds. (CRCPress, Boca Raton, Fla, 1997), pp. 233–260.
  11. A. J. Campillo, J. D. Eversole, and H. B. Lin, “CavityQED modified stimulated and spontaneous processes in microdroplets,”in Optical Processes in Microcavities, R. K. Chang andA. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 167–207.
  12. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded insmall particles,” Phys. Rev. A 13, 396–404 (1976). [CrossRef]
  13. Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a sphericalsurface: a complete treatment,” Surf. Sci. 195, 1–14 (1988). [CrossRef]
  14. W. C. Chew, Waves and Fields in InhomogeneousMedia (Van Nostrand Reinhold, New York, 1995), Chap. 7.
  15. P. W. Barber and S. C. Hill, Light Scatteringby Particles: Computational Methods (World Scientific, Singapore, 1990).
  16. T. E. Ruekgauer, P. Nachman, R. L. Armstrong, and J.-G. Xie, “A nonlinear outcoupling mechanism in a cylindrical dielectric microcavitysupporting stimulated Raman scattering,” Opt. Lett. 20, 2090–2092 (1995). [CrossRef] [PubMed]
  17. M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a hightemperature environment,” in Proceedings of the Conferenceon Laser Applications in Combustion and Combustion Diagnostics, SPIE 1862, 269–286 (1993). [CrossRef]
  18. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individualairborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996). Some of the particles studied were composed of several-to-many rod-shapedbacterial cells. [CrossRef] [PubMed]
  19. S. C. Hill, R. E. Benner, P. R. Conwell, and C. K. Rushforth, “Structural resonances observed in the fluorescence emission from smallparticles on substrates,” Appl. Opt. 23, 1680–1683 (1984). [CrossRef]
  20. S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning structural resonancelocations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985). [CrossRef] [PubMed]
  21. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986). [CrossRef]
  22. B. R. Johnson, “Light-scattering from a spherical particle on a conducting plane: 1.Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992); erratum, 10, 766 (1993). [CrossRef]
  23. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); erratum, 9, 844–845 (1992). [CrossRef]
  24. B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conductingplane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994). [CrossRef]
  25. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surfaceby the multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996). [CrossRef]
  26. G. Videen, “Light scattering from a particle on or near a perfectly conductingsurface,” Opt. Commun. 115, 1–7 (1995). [CrossRef]
  27. T. C. Rao and R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried ina ground plane. I. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989). [CrossRef]
  28. T. C. Rao and R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried ina ground plane. II. TE case,” J. Opt. Soc. Am. A 8, 1986–1990 (1991). [CrossRef]
  29. J. C. Bertrand and J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975). [CrossRef]
  30. P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structureson flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994). [CrossRef] [PubMed]
  31. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conductingplane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995). [CrossRef]
  32. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder neara plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483–493 (1996). [CrossRef]
  33. G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory andcomparison with experimental data,” J. Opt. Soc. Am. A 14, 70–78 (1997). [CrossRef]
  34. S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneouslyperturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995). [CrossRef]
  35. B. V. Bronk, M. J. Smith, and S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in amicrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993). [CrossRef] [PubMed]
  36. D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994). [CrossRef]
  37. C.-T. Tai, Dyadic Green Functions in ElectromagneticTheory, 2nd ed. (IEEE, Piscataway, N.J., 1994), p. 102.
  38. Another common way to write the Green function relation is E(r)=ω2μVḠ(r, r)⋅P(r)dV, where P(r)=−iωJ(r). The dipole moment p(r) of the source is related to the polarizationper unit volume P(r) by p(r)=VP(r)dv. We use the notation of individual dipoles becausewe have been modeling radiation from individual molecules.
  39. The assumption of a uniform permeability is valid for theproblems we want to model, which are at optical frequencies.
  40. Ref. 14, pp. 410–411. Therelation for regions with varying μ is Ḡ(ra, rb)μ(rb)=ḠT(rb, ra)μ(ra).
  41. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, Piscataway, N.J., 1991), p. 102.
  42. Time reversal invariance and spatial reciprocity of acoustic wavesare discussed in M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997). [CrossRef]
  43. J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1549 (1991). [CrossRef]
  44. D. Q. Chowdhury, P. W. Barber, and S. C. Hill, “Energy density distribution inside large nonabsorbing spheres via Mietheory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992). [CrossRef] [PubMed]
  45. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities oflarge cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987). [CrossRef] [PubMed]
  46. E. S. C. Ching, P. T. Leung, and K. Young, “OpticalProcesses in Microcavities—The Role of Quasinormal Modes,” in Optical Processes in Microcavities, R. K. Chang and A. J.Campillo, eds. (World Scientific, Singapore, 1996), pp. 18–65.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited