OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2530–2542

Second-harmonic generation in atomic vapor with picosecond laser pulses

Doseok Kim, Christopher S. Mullin, and Y. R. Shen  »View Author Affiliations

JOSA B, Vol. 14, Issue 10, pp. 2530-2542 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump–probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses.

© 1997 Optical Society of America

Doseok Kim, Christopher S. Mullin, and Y. R. Shen, "Second-harmonic generation in atomic vapor with picosecond laser pulses," J. Opt. Soc. Am. B 14, 2530-2542 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979), and references therein.
  2. R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974); P. P. Sorokin, J. J. Wynne, and J. R. Lankard, “Tunable coherent ir source based upon four-wave parametric conversionin alkali metal vapors,” Appl. Phys. Lett. 22, 342–344 (1973). [CrossRef]
  3. J. L. Carlsten and T. J. McIlrath, “Observations of stimulated anti-Stokes radiation in barium vapor,” J. Phys. B 6, L80–L85 (1973). [CrossRef]
  4. See, for example, Y. R. Shen, The Principlesof Nonlinear Optics (Wiley, New York, 1984).
  5. D. L. Andrews, “Forbidden nature of multipolar contributions to second-harmonic generationin isotropic fluids,” Phys. Rev. A 38, 3113–3115 (1988); T. F. Heinz and D. P. DiVincenzo “Comment on `Forbidden nature of multipolar contributions to second-harmonicgeneration in isotropic fluids, ' ” Phys. Rev. A 42, 6249–6251 (1990). [CrossRef] [PubMed]
  6. P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130, 919–929 (1963). [CrossRef]
  7. D. S. Bethune, R. W. Smith, and Y. R. Shen, “Optical quadrupole sum-frequency generation in sodium vapor,” Phys. Rev. Lett. 37, 431–434 (1976); “Sum-frequency generation via a resonant quadrupole transition in sodium,” Phys. Rev. A 17, 277–292 (1978). [CrossRef]
  8. T. Mossberg, A. Flusberg, and S. R. Hartmann, “Optical second-harmonic generation in atomic thallium vapor,” Opt. Commun. 25, 121–124 (1978). [CrossRef]
  9. J. Okada, Y. Fukuda, and M. Matsuoka, “Optical second harmonic generation in the forbidden 22S1/2–32S1/2 transitionof atomic lithium vapor,” J. Phys. Soc. Jpn. 50, 1301–1309 (1981). [CrossRef]
  10. J. Bokor, R. R. Freeman, R. L. Panock, and J. C. White, “Generation of high-brightness coherent radiation in the vacuum ultravioletby four-wave parametric oscillation in mercury vapor,” Opt. Lett. 6, 182–184 (1981). [CrossRef] [PubMed]
  11. R. R. Freeman, J. E. Bjorkholm, R. Panock, and W. E. Cooke, “Opticalsecond harmonic generation by a single laser beam in an isotropic medium,”in Laser Spectroscopy V, by A. R. W. McKellar, T. Oka, and B. P. Stoicheff, eds. (Springer-Verlag, Berlin, 1981), pp. 453–457.
  12. W. Jamroz, P. E. LaRocque, and B. P. Stoicheff, “Resonantly enhanced second-harmonic generation in zinc vapor,” Opt. Lett. 7, 148–150 (1982). [CrossRef] [PubMed]
  13. S. Dinev, “Two-photon resonant optical second harmonic generation from s, p, and d states of K atoms,” J. Phys. B 21, 1681–1697 (1988); “Second harmonic generation and parametric emission by two-photon excitationof the 5s2S1/2 state of sodium,” J. Phys. B 21, 1111–1119 (1988). [CrossRef]
  14. M. Lu and J. Tsai, “Optical second harmonic generation from low-lying excited states inpotassium vapor,” J. Phys. B 23, 921–935 (1990). [CrossRef]
  15. J. Y. Zhang, H. T. Zhou, and P. Jin, “Mechanism studyof the generation of frequency-doubled stimulated emission in metal vaporby using RIS,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto and J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989), pp. 29–32.
  16. A. Elçi and D. Depatie, “Second-harmonic generation from collision complexes,” Phys. Rev. Lett. 60, 688–691 (1988). [CrossRef]
  17. S. Vianna and C. de Araujo, “Collision-assisted second-harmonic generation from Rydberg atoms,” Phys. Rev. A 44, 733–736 (1991). [CrossRef] [PubMed]
  18. D. S. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A 23, 3139–3151 (1981). [CrossRef]
  19. C. S. Mullin, D. Kim, M. B. Feller, and Y. R. Shen, “Picosecond studies of optical second harmonic generation in atomicvapor,” Phys. Rev. Lett. 74, 2678–2681 (1995); D. Kim, C. S. Mullin, and Y. R. Shen, “Theory of resonant second harmonic generation in atomic vapor,” Appl. Phys. B 60, S215–S220 (1995); “Resonant second harmonic generation in potassiumvapor,” in Laser Spectroscopy, M. Inguscio, M.Allegrini, and A. Sasso, eds. (World Scientific, Singapore, 1996), pp. 337–340. [CrossRef] [PubMed]
  20. K. Miyazaki, T. Sato, and H. Kashiwagi, “Spontaneous-field-induced optical second-harmonic generation in atomicvapors,” Phys. Rev. Lett. 43, 1154–1157 (1979). [CrossRef]
  21. M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rza¸żewski, “Anomalies in optical harmonic generation using high-intensity laserradiation,” Phys. Rev. A 41, 3822–3825 (1990). [CrossRef] [PubMed]
  22. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorptionin atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991); L. Marmet, K. Hakuta, and B. P. Stoicheff, “Second-harmonic generation at Lyman-α in atomic hydrogen,” Opt. Lett. 16, 261–263 (1991). [CrossRef] [PubMed]
  23. L. Marmet, K. Hakuta, and B. P. Stoicheff, “Second-harmonic generation in atomic hydrogen induced by a charge-separationfield,” J. Opt. Soc. Am. B 9, 1038–1046 (1992). [CrossRef]
  24. J. C. MacGillivray and M. S. Feld, “Theory of superradiance in an extended, optically thick medium,” Phys. Rev. A 14, 1169–1189 (1976). [CrossRef]
  25. R. B. Miles and S. E. Harris, “Optical third-harmonic generation in alkali metal vapors,” IEEE J. Quantum Electron. QE-9, 470–484 (1973); H. Eichner, “Third-order susceptibility of alkali metal vapors,” IEEE J. Quantum Electron. QE-11, 121–130 (1975); W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Sodium through Calcium (NationalBureau of Standards, Washington, D.C., 1969), p. 225. [CrossRef]
  26. B. Warner, “Atomic oscillator strengths. III. Alkali-like spectra,” Mon. Not. R. Astron. Soc. 139, 115–128 (1968).
  27. T. F. Gallagher, S. A. Edelstein, and R. M. Hill, “Collisional angular-momentum mixing of Rydberg states of Na by He, Ne, and Ar,” Phys. Rev. A 15, 1945–1951 (1977); A. Flusberg, R. Kachru, T. Mossberg, and S. R. Hartmann, “Foreign-gas-induced relaxation of Rydberg S and D states in atomic sodium,” Phys. Rev. A 19, 1607–1621 (1979). [CrossRef]
  28. S. Augst, D. D. Meyerhofer, C. I. Moore, and J. Peatross, “Tunneling ionization and harmonic generation in krypton gas using ahigh-intensity, 1-μm, 1-ps laser,” in Femtosecondto Nanosecond High-Intensity Lasers and Applications, E. M. Campell, ed., Proc. SPIE 1229, 152–158 (1990). [CrossRef]
  29. M. Matsuoka, H. Nakatsuka, and J. Okada, “Free-precession decay of two-photon-induced coherence in Ca vapor,” Phys. Rev. A 12, 1062–1065 (1975). [CrossRef]
  30. C. R. Vidal and J. Cooper, “Heat-pipe oven: a new well-defined metal vapor device for spectroscopicmeasurements,” J. Appl. Phys. 40, 3370–3374 (1969). [CrossRef]
  31. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate andlithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993). [CrossRef]
  32. D. E. Golden and H. W. Bandel, “Low energy e-Ar total scattering cross sections:the Ramsauer–Townsend effect,” Phys. Rev. 149, 58–59 (1966). [CrossRef]
  33. A. Kasden, T. M. Miller, and B. Bederson, “Absolute measurements of total cross sections for electron scatteringby sodium atoms (0.5–50 eV),” Phys. Rev. A 8, 1562–1569 (1973). [CrossRef]
  34. D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixingand pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975). [CrossRef]
  35. J. H. Brownell, X. Lu, and S. R. Hartmann, “Time-delayed second harmonic generation,” Phys. Rev. Lett. 75, 3657–3660 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited