OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2670–2680

Resonant two-photon processes for nonvolatile holography in photorefractive crystals under continuous-wave illumination

Loukas Paraschis, Matthew C. Bashaw, Alice Liu, and Lambertus Hesselink  »View Author Affiliations

JOSA B, Vol. 14, Issue 10, pp. 2670-2680 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the resonant two-photon (two-step) processes of photorefractive grating formation and identify the regimes in which nonvolatile holography is possible. We develop a charge-transport model to describe this behavior for a photorefractive crystal with a single active impurity species under continuous-wave illumination. For the cases that allow for nondestructive reconstruction of gratings, we evaluate the maximum refractive-index perturbation and the response rate with respect to illumination intensities and impurity characteristics. We evaluate the importance of the impurity intermediate-state occupancy. Holographic data storage system issues are also discussed. The present results are consistent with previously reported photorefractive behavior and predict additional properties that characterize these resonant processes. The analysis may be used further to study other related two-photon phenomena of interest in holographic storage systems.

© 1997 Optical Society of America

Loukas Paraschis, Matthew C. Bashaw, Alice Liu, and Lambertus Hesselink, "Resonant two-photon processes for nonvolatile holography in photorefractive crystals under continuous-wave illumination," J. Opt. Soc. Am. B 14, 2670-2680 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  2. L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993). [CrossRef]
  3. K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991). [CrossRef]
  4. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  5. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994). [CrossRef]
  6. A. Y. Liu, L. Paraschis, M. C. Bashaw, and L. Hesselink, “Prolongedreadout using two defect species in SBN,” in Conferenceon Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest series(Optical Society of America, Washington, D.C., 1996), paper CWF4.
  7. A. Y. Liu, M. C. Bashaw, L. Paraschis, and L. Hesselink, “Theoryof two-species transport in photorefractive crystals using two wavelengthsfor nondestructive readout,” in Joint International Symposiumon Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA TechnicalDigest Series (Optical Society of America, Washington, D.C., 1996), paperJTuD3.
  8. D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975). [CrossRef]
  9. D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975). [CrossRef]
  10. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976). [CrossRef]
  11. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984). [CrossRef]
  12. Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985). [CrossRef]
  13. K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993). [CrossRef]
  14. R. M. MacFarlane, “Optical spectroscopy of photorefractivematerials for holographic storage applications,” presented at the 1995Annual Meeting of the Optical Society of America.
  15. J. P. Wilde, “Spectroscopic characterization of photorefractive materials for holographicstorage applications,” Fluorescence Detection IV, E. R. Menzel, ed., Proc. SPIE 2705, 82–92 (1996). [CrossRef]
  16. Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-dopedstrontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996). [CrossRef] [PubMed]
  17. P. W. France, ed., Optical Fiber and LaserAmplifiers (CRC, Boca Raton, Fla., 1991), Chap. 8.
  18. M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)]. [CrossRef]
  19. The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation). [CrossRef]
  20. V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratingsin nonmetalic crystals,” Sov. Phys. Solid State 16, 2414–2415 (1975).
  21. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Pis'ma Zh. Tekh. Fiz. 2, 1114–1116 (1976)[ Sov. Tech. Phys. Lett. 2, 438–440 (1976)].
  22. H. W. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  23. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637–1645 (1983). [CrossRef]
  24. L. Hesselink, S. Orlov, and A. Akella, “Two-color recordingin lithium niobate,” submitted to Optics Letters.
  25. M. C. Bashaw, M. Jenanathan, and L. Hesselink, “Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit,” J. Opt. Soc. Am. B 11, 1743–1757 (1994). [CrossRef]
  26. W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976).
  27. L. Paraschis, M. C. Bashaw, A. Y. Liu, and L. Hesselink, “Propertiesof resonant two-photon processes in photorefractive media,” in Joint International Symposium on Optical Memory and Optical DataStorage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Societyof America, Washington, D.C., 1996), paper JTuD4.
  28. S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, “Highsensitivity two-color non-volatile recording in lithium niobate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSATechnical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CPD29.
  29. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited