OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 10 — Oct. 1, 1997
  • pp: 2681–2690

Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector

J. Nathan Kutz, Brandon C. Collings, Keren Bergman, Sergio Tsuda, Steven T. Cundiff, Wayne H. Knox, Philip Holmes, and Michael Weinstein  »View Author Affiliations

JOSA B, Vol. 14, Issue 10, pp. 2681-2690 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model is developed for the pulse dynamics in a fiber laser mode locked by a saturable Bragg reflector and operating in regimes beyond the scope of the master mode-locking equation. An asymptotically valid mode-locked evolution equation is derived, which includes a heuristic model for the saturable Bragg reflector dynamics. The model employed allows, for the first time to our knowledge, direct comparison (with no free parameters) of the theoretical predictions of the pulse spectral and temporal profiles with experimental results in both the normal and anomalous dispersion regimes. Extensive numerical simulations of the governing evolution equation, an averaged equation, and analytical solutions are found to be in excellent agreement with experimental results.

© 1997 Optical Society of America

J. Nathan Kutz, Brandon C. Collings, Keren Bergman, Sergio Tsuda, Steven T. Cundiff, Wayne H. Knox, Philip Holmes, and Michael Weinstein, "Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector," J. Opt. Soc. Am. B 14, 2681-2690 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. N. Duling III and M. L. Dennis, CompactSources of Ultrashort Pulses (Cambridge University, Cambridge, England, 1995).
  2. I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991). [CrossRef]
  3. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting, passively modelocked erbium fiber laser based on theamplifying Sagnac switch,” Electron. Lett. 27, 542–544 (1991). [CrossRef]
  4. M. L. Dennis and I. N. Duling III, “High repetition rate figure eight laser with extracavity feedback,” Electron. Lett. 28, 1894–1896 (1992). [CrossRef]
  5. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse modelocked erbium fiber ring laser,” Electron. Lett. 28, 2226–2228 (1992). [CrossRef]
  6. M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, “Passive modelocking by using nonlinear polarization evolution in apolarizing-maintaining erbium-doped fiber,” Opt. Lett. 18, 894–896 (1993). [CrossRef]
  7. E. A. DeSouza, C. E. Soccolich, W. Pleibel, R. H. Stolen, M. N. Islam, J. R. Simpson, and D. J. DiGiovanni, “Saturable absorber modelocked polarization maintaining erbium-dopedfiber laser,” Electron. Lett. 29, 447–449 (1993). [CrossRef]
  8. S. Tsuda, W. H. Knox, J. L. Zyskind, J. E. Cunningham, W.Y. Jan, and R. Pathak, “Broadband compact mode-locked Er/Yb fiber laser,”in Conference on Lasers and Electro-Optics, Vol. 9 ofOSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CFD2.
  9. S. Tsuda, W. H. Knox, E. A. de Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecondmodelocking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995). [CrossRef] [PubMed]
  10. B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laserpumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996). [CrossRef] [PubMed]
  11. F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995). [CrossRef]
  12. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Speilmann, E. Wintner, and A. J. Schmit, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992). [CrossRef]
  13. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse mode-locking and Kerr lens modelocking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  14. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994). [CrossRef]
  15. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  16. M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively modelockedfiber lasers,” IEEE J. Quantum Electron. 28, 720–728 (1992). [CrossRef]
  17. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” J. Lightwave Technol. 29, 983–996 (1993).
  18. S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, “Averaged soliton dynamics of high-gain erbium fiber laser,” Opt. Lett. 16, 1337–1339 (1991). [CrossRef] [PubMed]
  19. F. X. Kärtner, D. Kopf, and U. Keller, “Solitary pulse stabilization and shortening in actively modelockedlasers,” J. Opt. Soc. Am. B 12, 486–496 (1994). [CrossRef]
  20. T. Brabec, C. Spielmann, and F. Krausz, “Limits of pulse shortening in solitary lasers,” Opt. Lett. 17, 748–750 (1992). [CrossRef] [PubMed]
  21. P. F. Curley, C. Spielmann, T. Brabec, E. Winter, and F. Krausz, “Periodic pulse evolution in solitary lasers,” J. Opt. Soc. Am. B 10, 1025–1028 (1993). [CrossRef]
  22. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, “Role of dispersion in pulse emission from a sliding-frequency fiberlaser,” J. Opt. Soc. Am. B 12, 938–944 (1995). [CrossRef]
  23. A. Hasegawa and Y. Kodama, “Guiding-center soliton in fibers with periodically varying dispersion,” Opt. Lett. 16, 1385–1387 (1991). [CrossRef] [PubMed]
  24. J. C. Bronski and J. N. Kutz, “Guiding-center pulse dynamics in nonreturn-to-zero (return-to-zero)communications system with mean-zero dispersion,” J. Opt. Soc. Am. B 14, 903–911 (1997). [CrossRef]
  25. J. C. Bronski and J. N. Kutz, “Asymptotic behavior of the nonlinear Schrödinger equation withrapidly-varying, mean-zero dispersion,” Physica D 108, 315–329 (1997). [CrossRef]
  26. H. Haug and S. W. Koch, Quantum Theory of theOptical and Electronic Properties of Semiconductors, 3rd ed. (WorldScientific, Singapore, 1994), Chap. 16, pp. 317–327.
  27. D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probedwith femtosecond optical pulses,” J. Lumin. 44, 233–246 (1989). [CrossRef]
  28. D. A. B. Miller, “Quantum well optical switching devices,”in Confined Electrons and Photons, E. Burnstein andC. Weisbuch, eds. (Plenum, New York, 1995), pp. 675–701.
  29. Erich Zauderer, Partial Differential Equationsof Applied Mathematics, 2nd ed. (Wiley, New York, 1989), Chap. 7, pp.426–446.
  30. N. R. Pereira and L. Stenflo, “Nonlinear Schrödinger equation including growth and damping,” Phys. Fluids 20, 1733–1734 (1977). [CrossRef]
  31. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Stability of passively mode-locked fiber lasers with fast saturableabsorption,” Opt. Lett. 19, 198–200 (1994). [CrossRef]
  32. T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, “Removing the stiffness from interfacial flows with surface tension,” J. Comput. Phys. 114, 312–338 (1994). [CrossRef]
  33. M. D. Fleit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978). [CrossRef]
  34. T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations.II. Numerical, nonlinear Schrödinger equation,” J. Comput. Phys. 55, 203–230 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited