OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 11 — Nov. 1, 1997
  • pp: 2811–2817

Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses

Jérôme Poirson, Fabien Bretenaker, Marc Vallet, and Albert Le Floch  »View Author Affiliations

JOSA B, Vol. 14, Issue 11, pp. 2811-2817 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phenomenon of ringing in swept Fabry–Perot cavities, which leads to discrepancies with respect to usual Airy peaks, exhibits three different regimes, depending on the values of the finesse, the sweep frequency, and the free spectral range of the cavity. In particular, the intermediate case in which the Fabry–Perot cavity transmission essentially oscillates is shown theoretically and experimentally to provide a new simple method to measure the finesse of the cavity. For cavities with intermediate finesses (F10 000) this method is experimentally shown to have a precision of the order of 1%.

© 1997 Optical Society of America

Jérôme Poirson, Fabien Bretenaker, Marc Vallet, and Albert Le Floch, "Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses," J. Opt. Soc. Am. B 14, 2811-2817 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Brossel, “Multiple-beam localized fringes: Part I. Intensity distribution and localization,” Proc. Phys. Soc. London 59, 224–234 (1947). [CrossRef]
  2. M. Born and E. Wolf, Principle of Optics, 3rd ed. (Pergamon, Oxford, 1965), Chap. 7, pp. 351–360.
  3. J. Holden, “Multiple-beam interferometry: intensity distribution in the reflected system,” Proc. Phys. Soc. London, Sect. B 62, 405–417 (1949). [CrossRef]
  4. K. Kinosita, “Numerical evaluation of the intensity curve of a multiple-beam Fizeau fringe,” J. Phys. Soc. Jpn. 8, 219–225 (1953). [CrossRef]
  5. H. Boersch and G. Herziger, “Theoretical and experimental investigation of regenerative laser amplifiers and their applications,” IEEE J. Quantum Electron. QE-2, 549–552 (1966). [CrossRef]
  6. J. R. Greig and J. Cooper, “Rapid scanning with the Fabry–Perot étalon,” Appl. Opt. 7, 2166–2170 (1968). [CrossRef] [PubMed]
  7. J. H. Williamson and S. S. Medley, “On the interpretation of laser interferometer fringe patterns,” Can. J. Phys. 47, 515–519 (1969). [CrossRef]
  8. A. E. Dangor and S. J. Fielding, “The response of the Fabry–Perot interferometer to rapid changes in optical length,” J. Phys. D 3, 413–421 (1970). [CrossRef]
  9. Z. K. Ioannidis, P. M. Radmore, and I. P. Giles, “Dynamic response of an all-fiber ring resonator,” Opt. Lett. 13, 422–424 (1988). [CrossRef] [PubMed]
  10. Z. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991). [CrossRef]
  11. Z. Li, G. E. Stedman, and H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993). [CrossRef]
  12. S. Balle, I. C. M. Littler, K. Bergman, and F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993). [CrossRef]
  13. K. Hsu and C. H. Miller, “Theory and measurements of speed-of-light effects in long cavity fiber Fabry–Perot scanning interferometers,” J. Lightwave Technol. 11, 1204–1208 (1993). [CrossRef]
  14. K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef]
  15. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992). [CrossRef] [PubMed]
  16. D. Z. Anderson, J. C. Frish, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef] [PubMed]
  17. A. Kastler, “Transmission d’une impulsion lumineuse par un interféromètre Fabry–Perot,” Nouv. Rev. Opt. 5, 133–139 (1974). [CrossRef]
  18. A. O. Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  19. N. Uehara and K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry–Perot interferometer using the frequency response functions,” Appl. Phys. B 61, 9–15 (1995). [CrossRef]
  20. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1979), Chap. 3, p. 307.
  21. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and M. Oger, “Supermirror phase anisotropy measurement,” Opt. Lett. 20, 671–673 (1995); D. Jacob, M. Vallet, F. Bretenaker, R. Le Naour, and M. Oger, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited