OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 14, Iss. 2 — Feb. 1, 1997
  • pp: 232–249

Optimizing homodyne detection of quadrature-noise squeezing by local-oscillator selection

Jeffrey H. Shapiro and Asif Shakeel  »View Author Affiliations


JOSA B, Vol. 14, Issue 2, pp. 232-249 (1997)
http://dx.doi.org/10.1364/JOSAB.14.000232


View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general formalism is developed for optimizing homodyne detection of quadrature-noise squeezing by selection of the local-oscillator (LO) field. The optimum LO is the minimum-eigenvalue eigenfunction of a particular Fredholm integral equation whose kernel depends on the signal field's normally ordered and phase-sensitive covariance functions. The squeezing that results from use of the optimum LO equals one plus twice its associated eigenvalue. A continuous-wave (cw) simplification of the general formalism is presented for the case of stationary signal-field covariances when the homodyne photocurrent is spectrum analyzed. Another simplified special case is exhibited for single-spatial-mode operation, such as is encountered in fiber-based quantum-noise experiments. The cw-source–spectrum-analysis approach is used to determine the optimum LO field and its squeezing performance for cw squeezed-state generation in a bulk Kerr medium with a Gaussian spatial-response function. The single-spatial-mode framework is employed to find the optimum LO field and its squeezing performance for pulsed squeezed-state generation in a single-mode optical fiber whose Kerr nonlinearity has a noninstantaneous response function. Comparison of the cw limit of this pulsed analysis with previous cw fiber-squeezing theory reveals a new regime for quadrature-noise reduction: Raman squeezing in fiber four-wave mixing.

© 1997 Optical Society of America

Citation
Jeffrey H. Shapiro and Asif Shakeel, "Optimizing homodyne detection of quadrature-noise squeezing by local-oscillator selection," J. Opt. Soc. Am. B 14, 232-249 (1997)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-2-232

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited