OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 5 — May. 1, 1997
  • pp: 1009–1012

Analysis of the fluorescence of a Nd-doped 50% CaO–50% Al2O3 glass, pumped at 810 nm, between 1050 and 1100 nm

P.-F. Paradis, F. Babin, J.-M. Gagné, and S. Lévesque  »View Author Affiliations

JOSA B, Vol. 14, Issue 5, pp. 1009-1012 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the first observations, to our knowledge, of the   4 F 3 / 2   4 I 11 / 2 (1060-nm) induced fluorescence in a Nd-doped CaO Al 2 O 3 glass pumped by an 810-nm diode laser. This new doped glass is produced as a 3-mm-diameter sphere by heating and melting in an aerodynamic containerless trap and is rapidly solidified by radiative cooling ( > 350 K/s). This glass has an interesting Nd 3 + emission maximum at 1067 nm (not many doped glasses have their emission maxima close to 1067 nm). The measured fluorescence decay time of the   4 F 3 / 2 level is short (0.3 ms) when the ion is excited by a narrow-band pulsed dye laser.

© 1997 Optical Society of America

P.-F. Paradis, F. Babin, J.-M. Gagné, and S. Lévesque, "Analysis of the fluorescence of a Nd-doped 50% CaO–50% Al2O3 glass, pumped at 810 nm, between 1050 and 1100 nm," J. Opt. Soc. Am. B 14, 1009-1012 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961). [CrossRef]
  2. Y. Wang, Y. Li, Y. Liu, and B. Lu, “A Nd-glass micro-spherical cavity laser induced by cavity QED effects,” Proc. SPIE 1501, 40–48 (1991). [CrossRef]
  3. T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 6, 392–394 (1987). [CrossRef]
  4. J. R. Davy, “Development of calcium aluminate glasses for use in the infrared spectrum to 5 μm,” Glass Technol. 19, 32–36 (1978).
  5. E. V. Uhlmann, M. C. Weinberg, N. C. Kreidl, and A. A. Gotkas, “Glass forming ability in calcium aluminate-based systems,” J. Am. Ceram. Soc. 76, 449–453 (1993). [CrossRef]
  6. H. Hosono, K. Yamazaki, and Y. Abe, “Dopant-free ultraviolet sensitive calcium aluminate glasses,” J. Am. Ceram. Soc. 68, C304–C305 (1985). [CrossRef]
  7. D. Massiot, D. Trumeau, B. Touzo, I. Farnan, J.-C. Rifflet, A. Douy, and J.-P Coutures, “Structure and dynamics of CaAl2O4 from liquid to glass: a high temperature 27Al NMR time-resolved study,” J. Phys. Chem. 99, 1645–1655 (1995). [CrossRef]
  8. S. A. Payne and G. F. Albrecht, “Solid State Lasers,” in Encyclopedia of Lasers and Optical Technology, R. A. Meyers, ed. (Academic, New York, 1991), p. 764.
  9. O. Svelto, Principles of Lasers (Plenum, New York, 1989), p. 494.
  10. B. T. Poe, P. F. McMillan, B. Co⁁té, D. Massiot, and J.-P. Coutures, “Structure and dynamics in calcium aluminate liquids: high temperature 27Al NMR and Raman spectroscopy,” J. Am. Ceram. Soc. 77, 1832–1838 (1994). [CrossRef]
  11. J.-P. Coutures, J.-C. Rifflet, D. Billard, and P. Coutures, “Contactless treatments of liquids in a large temperature range by an aerodynamic levitation device and laser heating,” in Proceedings of the Sixth European Symposium on Material Sciences under Microgravity Conditions, Symposium Proceedings 256 (European Space Agency, Noordwijk, The Netherlands, 1986), pp. 427–443.
  12. L. E. Topol, D. H. Hengstenberg, M. Blander, R. A. Happe, N. L. Richardson, and L. S. Nelson, “Formation of new oxides glasses by laser spin melting and free fall cooling,” J. Non-Cryst. Solids 12, 377–390 (1973). [CrossRef]
  13. F. Babin, J.-M. Gagné, P.-F. Paradis, J.-P. Coutures, and J.-C. Rifflet, “High temperature containerless laser processing of dielectric samples in microgravity: study of aerodynamic trapping,” Microgravity Sci. Technol. 7, 283–289 (1995).
  14. P.-F. Paradis, F. Babin, and J.-M. Gagné, “Study of the aerodynamic trap for containerless laser materials processing in microgravity,” Rev. Sci. Instrum. 67, 262–270 (1996). [CrossRef]
  15. F. Babin, P.-F. Paradis, and J.-M. Gagné, “Analysis of laser heating and aerodynamic trapping for containerless glass processing in reduced gravity,” presented at 34th AIAA Aerospace Meeting and Exhibit (American Institute of Aeronautics and Astronautics, Reston, Va., 1996), paper 96–0924.
  16. R. A. Happe, “Implications of zero gravity for producing new glasses in space,” J. Non-Cryst. Solids 3, 375–392 (1970). [CrossRef]
  17. S. E. Stokowski, R. A. Saroyan, and M. J. Weber, Nd-doped Laser Glass Spectroscopic and Physical Properties (Lawrence Livermore National Laboratory, Livermore, Calif., 1988), Vols. 1 and 2.
  18. A. Douy, Centre National de la Recherche Scientifique—Centre de Recherche sur la Physique des Hautes Températures, 45071 Orléans, France (personal communication, 1994).
  19. A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Effect of bubble formation on microdroplet cavity quality factors,” J. Opt. Soc. Am. B 13, 521–531 (1996). [CrossRef]
  20. D. R. Lide, CRC Handbook of Chemistry and Physics, 76th ed. (CRC, Boca Raton, Fla., 1995).
  21. W. J. Miniscalco, “Optical and electronic properties of rare earth ions in glasses,” in Rare-Earth Doped Fibre Lasers and Amplifiers, J. M. F. Digonnet, ed. (Dekker, New York, 1993), pp. 19–133.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited