OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 5 — May. 1, 1997
  • pp: 1131–1137

Single-beam polarization interferometry measurement of the linear electro-optic effect in poled polymer films with a reflection configuration

S. H. Han and J. W. Wu  »View Author Affiliations

JOSA B, Vol. 14, Issue 5, pp. 1131-1137 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurement of the linear electro-optic effect in poled polymer thin films with two parallel electrodes is analyzed. A single-beam polarization interferometry is adopted in a reflection configuration. The dependence of the linear electro-optic modulated intensity on linear optical parameters is investigated experimentally and is compared with the theoretical analysis. Specifically, the electro-optic modulated intensity is measured as a function of optical bias, optical polarization direction, and incidence angle. In particular, the dependence of the electro-optic modulated signal on the incidence angle shows that the linear electro-optic effect in the polymer thin film induces the modulations of both the refractive angle and the linear refractive index. Also, the amount of Fabry–Perot effect influencing the modulation signal is analyzed.

© 1997 Optical Society of America

S. H. Han and J. W. Wu, "Single-beam polarization interferometry measurement of the linear electro-optic effect in poled polymer films with a reflection configuration," J. Opt. Soc. Am. B 14, 1131-1137 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett. 53, 1800 (1988). [CrossRef]
  2. K. S. Lee, J. W. Wu, M. H. Lee, H. K. Kim, and Y. H. Won, Opt. Quantum Electron. 27, 347 (1995). [CrossRef]
  3. C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990). [CrossRef]
  4. Y. Shuto and M. Amano, J. Appl. Phys. 77, 4632 (1995). [CrossRef]
  5. L. M. Hayden, G. F. Sauter, F. R. Ore, P. L. Pasillas, J. M. Hoover, G. A. Lindsay, and R. A. Henry, J. Appl. Phys. 68, 456 (1990). [CrossRef]
  6. J. S. Schildkraut, Appl. Opt. 29, 19 (1990). [CrossRef]
  7. M. A. Mortazavi, A. Knoesen, S. T. Kowel, R. A. Henry, J. M. Hoover, and G. A. Lindsay, Appl. Phys. B 53, 287 (1991). [CrossRef]
  8. R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992). [CrossRef]
  9. Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. B 4, 1 (1993).
  10. P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 138 (1994). [CrossRef]
  11. D. Morichere, P.-A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, J. Opt. Soc. Am. B 10, 1984 (1993). [CrossRef]
  12. C. A. Eldering, A. Knoesen, and S. T. Kowel, J. Appl. Phys. 69, 3676 (1991). [CrossRef]
  13. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1987).
  14. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987). [CrossRef]
  15. J. W. Wu, J. Opt. Soc. Am. B 8, 142 (1991). [CrossRef]
  16. See the caption of Fig. 8 and discussions at the top of pages 12 and 14 of Ref. 9. The discussion at the bottom of page 12, however, attributes the increasing oscillation of the modulation signal to the increasing absorption. See also discussions in Ref. 11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited