OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 5 — May. 1, 1997
  • pp: 1228–1236

Cascadability and functionality of all-optical low-birefringent nonlinear optical loop mirror: experimental demonstration

K. H. Ahn, X. D. Cao, Y. Liang, B. C. Barnett, S. Chaikamnerd, and M. N. Islam  »View Author Affiliations

JOSA B, Vol. 14, Issue 5, pp. 1228-1236 (1997)

View Full Text Article

Acrobat PDF (299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We verify both experimentally and theoretically the cascadability and the Boolean complete functionality of the low-birefringent nonlinear optical loop mirror (low-bi NOLM) operating with all inputs at the same wavelength. We achieve a low switching energy by using a low-birefringent (Δn∼3.5×10−6), polarization-maintaining fiber to achieve a longer interaction length between two orthogonally polarized pulses. We experimentally demonstrate switching in the cascaded operation of two low-bi NOLM's using picosecond pulses from an erbium-doped fiber laser. This has the potential to have a bit rate of 100 Gb/s. After the two cascaded low-bi NOLM's, the performance is a peak switching contrast of 36:1 and a timing window of 1.7 pulse widths with a switching energy of 9 pJ. In addition, we demonstrate the AND and the XOR/NOT operations with the low-bi NOLM showing Boolean completeness. The AND operation has a switching contrast of 84.5:1, and the XOR/NOT has a switching contrast of 11.5:1. Finally, we study the gate numerically and find good agreement between experiments and simulations.

© 1997 Optical Society of America

K. H. Ahn, X. D. Cao, Y. Liang, B. C. Barnett, S. Chaikamnerd, and M. N. Islam, "Cascadability and functionality of all-optical low-birefringent nonlinear optical loop mirror: experimental demonstration," J. Opt. Soc. Am. B 14, 1228-1236 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, and M. N. Islam, “Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror,” Opt. Lett. 20, 1671–1673 (1995).
  2. K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
  3. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
  4. K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
  5. K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
  6. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
  7. S. V. Chernikov and J. R. Taylor, “Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,” Electron. Lett. 29, 658–660 (1993).
  8. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
  9. N. A. Whitaker, H. Avramopoulos, P. M. W. French, M. C. Gabriel, and R. E. LaMarche, “All-optical arbitrary demultiplexing at 2.5 Gbit/s with tolerance to timing jitter,” Opt. Lett. 16, 1838–1840 (1991).
  10. X. D. Cao, B. C. Barnett, K. H. Ahn, Y. Liang, G. R. Williams, M. Vaziri, and M. N. Islam, “Experimental cascaded operation of low-birefringent nonlinear-optical loop mirrors,” Opt. Lett. 21, 1211–1213 (1996).
  11. K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
  12. K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
  13. I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
  14. K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
  15. A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
  16. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
  17. M. Jinno and T. Matsumoto, “Nonlinear Saginaw interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).
  18. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
  19. E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
  20. I. Wegener, The Complexity of Boolean Functions (Teubner, Stuttgart, 1987), p. 9.
  21. M. N. Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge U. Press, Cambridge, UK, 1992), pp. 146–152.
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), pp. 50–54, 69–70.
  23. J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, “Demonstration of optical switching by means of solitary wave collisions in a fiber ring reflector,” Opt. Lett. 16, 138–140 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited