OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 6 — Jun. 1, 1997
  • pp: 1312–1318

Reabsorption artifacts in measured excited-state lifetimes of solids

Markus P. Hehlen  »View Author Affiliations

JOSA B, Vol. 14, Issue 6, pp. 1312-1318 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of repeated radiative energy transfer on the observed excited-state lifetime τobs of a luminescent species in a solid is studied by Monte Carlo simulations. Increasing the sample path length, the reabsorption coefficient, or the luminescence quantum yield significantly lengthens τobs relative to its intrinsic value τ0. This effect is additionally amplified by total internal reflection. Room-temperature lifetimes of  2F5/2 in YAG:1%Yb3+ and  4I11/2 in YLF:5%Er3+ were measured in a spherically refractive-index-matched geometry, yielding the low values of 0.9489±0.0006 and 3.75±0.01 ms, respectively. It is concluded that lifetimes obtained from non-refractive-index matched experiments are usually significantly overestimated. The technique presented is easily applicable to room-temperature excited-state lifetime measurements of many luminescent solids.

© 1997 Optical Society of America

Markus P. Hehlen, "Reabsorption artifacts in measured excited-state lifetimes of solids," J. Opt. Soc. Am. B 14, 1312-1318 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Milne, “The diffusion of imprisoned radiation through a gas,” J. London Math. Soc. 1, 40 (1926).
  2. T. Holstein, “Imprisonment of resonance radiation in gases,” Phys. Rev. 72, 1212 (1947); “Imprisonment of resonance radiation in gases. II,” Phys. Rev. 83, 1159 (1951). [CrossRef]
  3. P. J. Walsh, “Imprisonment of resonance radiation in a gaseous discharge,” Phys. Rev. 107, 338 (1957). [CrossRef]
  4. A. V. Phelps, “Role of molecular ions, metastable molecules, and resonance radiation in the breakdown of rare gases,” Phys. Rev. 117, 619 (1960). [CrossRef]
  5. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1961).
  6. M. J. Boxall, C. J. Chapman, and R. P. Wayne, “Imprisonment and absorption of resonance radiation,” J. Photochem. 4, 281 (1975).
  7. W. P. Garver, M. R. Pierce, and J. J. Leventhal, “Measurement of atomic densities using radiation trapping,” J. Chem. Phys. 77, 1201 (1982). [CrossRef]
  8. J. Huennekens and A. Gallagher, “Radiation diffusion and saturation in optically thick Na vapor,” Phys. Rev. A 28, 238 (1983). [CrossRef]
  9. J. W. Mills and G. M. Hieftje, “A detailed consideration of resonance radiation trapping in the argon inductively coupled plasma,” Spectrochim. Acta 39B, 859 (1984).
  10. D. Benredjem, A. Sureau, H. Guennou, and C. Möller, “Radiation trapping and X-ray lasing in Al10+ in the recombination scheme,” Phys. Lett. A 203, 137 (1995). [CrossRef]
  11. C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, and B. H. T. Chai, “1.047-μm Yb:Sr5(PO4)3F energy storage optical amplifier,” IEEE J. Sel. Topics Quantum Electron. 1, 67 (1995). [CrossRef]
  12. P. P. Yaney, D. M. Schaeffer, and J. L. Wolf, “Fluorescence and absorption studies of Sr0.999−xGd0.001CexF2.001+x,” Phys. Rev. B 11, 2460 (1975). [CrossRef]
  13. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343 (1994). [CrossRef] [PubMed]
  14. W. A. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. 39, 912 (1949). [CrossRef]
  15. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179 (1993). [CrossRef]
  16. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 (1976).
  17. P. Lacovara, H. K. Choi, C. A. Wang, R. A. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089 (1991). [CrossRef] [PubMed]
  18. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992).
  19. S. A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885 (1988). [CrossRef]
  20. H. Chou and H. P. Jenssen, in Tunable Solid State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 22 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 167–174.
  21. E. P. Chicklis, L. Esterowitz, R. Allen, and M. Kruer, “Stimulated emission at 2.8 μm in Er3+:YLF,” in Proceedings of the International Conference on Lasers (STS, McLean, Va., 1979), pp. 172–178.
  22. S. A. Pollack, D. B. Chang, and M. Birnbaum, “Threefold upconversion laser at 0.83, 1.23, and 1.73 μm in Er:YLF pumped with a 1.53 μm Er glass laser,” Appl. Phys. Lett. 54, 869 (1989). [CrossRef]
  23. S. Hubert, D. Meichenin, B. W. Zhou, and F. Auzel, “Emission properties, oscillator strengths and laser parameters of Er3+ in LiYF4 at 2.7 μm,” J. Lumin. 50, 7 (1991). [CrossRef]
  24. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited