OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 6 — Jun. 1, 1997
  • pp: 1331–1338

Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω ω → 2ω infrared parametric amplification

J.-J. Zondy and D. Touahri  »View Author Affiliations

JOSA B, Vol. 14, Issue 6, pp. 1331-1338 (1997)

View Full Text Article

Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the temperature dependence of a continuous-wave noncritically phase-matched (θ=90°) optical parametric amplifier based on a 15-mm-long silver gallium sulfide crystal (AgGaS2) pumped by a 50-mW near-IR AlGaAs diode laser (λ3=0.843 μm). This amplifier is idler seeded by a 15-mW KCl:Li (FA-II) color-center laser (λ1=2.53 μm) and produces microwatt-range power of a signal radiation at λ2=1.265 μm. Updated linear and thermo-optic data of this chalcopyrite material, such as its room-temperature refractive indices and their temperature dependence, are devised from this type I (eoo) 3:1 frequency-division process and from other published data on noncritically phase-matched difference-frequency generation. The resulting dno, e/dT values reproduce fairly well all of the reported results on temperature phase-matched parametric mixing.

© 1997 Optical Society of America

J.-J. Zondy and D. Touahri, "Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω ω → 2ω infrared parametric amplification," J. Opt. Soc. Am. B 14, 1331-1338 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
  2. R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
  3. T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
  4. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
  5. K. Kato, “High power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
  6. A. G. Yodh, H. W. K. Tom, G. D. Aumillier, and R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
  7. E. J. Canto-Said, M. P. McCann, P. G. Wigley, and G. J. Dixon, “Broadly tunable mid-infrared intracavity difference-frequency laser,” Opt. Lett. 20, 1268 (1995).
  8. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
  9. U. Simon, S. Waltman, I. Loa, F. K. Tittel, and L. Hollberg, “External-cavity difference frequency source near 3.3 mm, based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323 (1995).
  10. D. Touahri, O. Acef, and J.-J. Zondy, “30-THz upconversion of an AlGaAs diode laser with AgGaS2:bridging the several-terahertz frequency gap in the near infrared,” Opt. Lett. 21, 213 (1996).
  11. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
  12. J.-J. Zondy, D. Touahri, and O. Acef, “Infra-red to visible non-linear up and down conversion processes using AgGaS2 crystals,” in Advanced Solid State Lasers, S. A. Payne and C. Pollock eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 164–167.
  13. G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
  14. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, A. E. Siegman, Ed. (Vol. 64 of Springer-Verlag, Series in Optical Science Springer-Verlag, Berlin, 1991), p. 82. Note the missing 10−5 factor on the dn/dT in this edition.
  15. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
  16. G. C. Bhar, S. Das, and P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228 (1994).
  17. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994).
  18. D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
  19. D. Touahri, “Développement d’une chaine de synthèse de fréquences de l’infra-rouge au visible. Application à la mesure de la transition à deux photons 5S1/2–5D5/2 du rubidium à 385 THz (778.1 nm),” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1996).
  20. The sample used in this experiment was supplied by Cleveland Crystals, Ohio.
  21. G. T. Johnston, “Wavelength dependence of dn/dT in infra-red transmitting semiconductor material,” Appl. Opt. 16, 1796 (1977).
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, eds., Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1986), Chap. 10.
  23. G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
  24. C. A. Ebbers, “Thermally insensitive, single crystal, biaxial electro-optic modulators,” J. Opt. Soc. Am. B 12, 1012 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited