OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 6 — Jun. 1, 1997
  • pp: 1351–1360

Second-harmonic generation in monolithic cavities

V. Berger  »View Author Affiliations

JOSA B, Vol. 14, Issue 6, pp. 1351-1360 (1997)

View Full Text Article

Acrobat PDF (290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Doubly resonant second-harmonic generation (SHG) in a monolithic cavity is theoretically analyzed. The general expressions for the intracavity SHG are given both in transmission and in reflection. An important application concerns the case of a non-phase-matchable nonlinear material, for which a well-designed cavity can lead to cavity phase matching of the nonlinear interaction. Indeed, it is shown that both the double-resonance condition and the phase-matching condition for the two counterpropagating second-harmonic intracavity waves can be satisfied with a cavity length equal to the coherence length of the nonlinear process and with well-designed mirror phases. For that purpose, metallic mirrors are well suited, but multilayer mirrors, which act exactly as metallic mirrors as far as the second-harmonic generation process is concerned, can also be used. An optimization of those pseudometallic multilayer mirrors is performed. The possibility of maintaining the double resonance with only one tuning parameter is also theoretically analyzed. Examples are given in which a SHG cavity enhancement of a few tens of thousands may be achieved in a rather simple experimental setup.

© 1997 Optical Society of America

V. Berger, "Second-harmonic generation in monolithic cavities," J. Opt. Soc. Am. B 14, 1351-1360 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47(5), 25–32 (1994).
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  3. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109–124 (1966).
  4. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6, 215–223 (1970).
  5. A. I. Ferguson and M. H. Dunn, “Intracavity second harmonic generation in continuous-wave dye lasers,” IEEE J. Quantum Electron. 13, 751–756 (1977).
  6. Feature on optical parametric oscillators, J. Opt. Soc. Am. B 10, 1659–1791 (1993).
  7. J. C. Berquist, H. Hemmati, and W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
  8. M. Brieger, H. Büsener, A. Hese, F. v. Moers, and A. Renn, “Enhancement of single frequency SGH in a passive ring resonator,” Opt. Commun. 38, 423–426 (1981).
  9. G. J. Dixon, C. E. Tanner, and C. E. Wieman, “432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity,” Opt. Lett. 14, 731–733 (1989).
  10. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
  11. W. J. Kozlovsky, W. P. Risk, W. Lenth, B. G. Kim, G. L. Bona, H. Jaeckel, and D. J. Webb, “Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser,” Appl. Phys. Lett. 65, 525–527 (1994).
  12. M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, “Efficient generation of picosecond pulses at 243 nm,” IEEE J. Quantum Electron. 26, 1253–1258 (1990).
  13. R. Paschotta, K. Fiedler, P. Kürz, and J. Mlynek, “Nonlinear mode coupling in doubly resonant frequency doublers,” Appl. Phys. B 58, 117 (1994).
  14. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993).
  15. L. A. Lugiato, G. Strini, and F. D. Martini, “Squeezed states in second-harmonic generation,” Opt. Lett. 8, 256–258 (1983).
  16. R. Schack, A. Sizmann, and A. Schenzle, “Squeezed light from a laser with an internal chi2 nonlinear element,” Phys. Rev. A 43, 6303–6315 (1991).
  17. S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
  18. A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, “Observation of amplitude squeezing of the up-converted mode in second harmonic generation,” Opt. Commun. 80, 138–142 (1990).
  19. P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, “Squeezing by second-harmonic generation in a monolithic resonator,” Appl. Phys. B 55, 216–225 (1992).
  20. P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, and J. Mlynek, “Bright squeezed light by second-harmonic generation in a monolithic resonator,” Europhys. Lett. 24, 449–454 (1993).
  21. R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
  22. R. H. Kingston, and A. L. McWhorter, “Electromagnetic mode mixing in nonlinear media,” Proc. IEEE 53, 4–12 (1965).
  23. S. Schiller, and R. L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator,” J. Opt. Soc. Am. B 10, 1696–1707 (1993).
  24. S. Schiller, “Principles and applications of optical monolithic total-internal-reflection resonators,” Ph.D. dissertation (Stanford University, Stanford, Calif. 1993).
  25. C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, “Doubly-resonant second-harmonic generation in β-barium-borate,” Opt. Commun. 71, 229–234 (1989).
  26. C. Zimmermann, T. W. Hänsch, R. Byer, S. O’Brien, and D. Welch, “Second harmonic generation at 972 nm using a distributed Bragg reflection semiconductor laser,” Appl. Phys. Lett. 61, 2741–2743 (1992).
  27. J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18, 70–73 (1971).
  28. L. A. Wu and H. J. Kimble, “Interference effects in second-harmonic generation within an optical cavity,” J. Opt. Soc. Am. B 2, 697–703 (1985).
  29. R. Lodenkamper, M. M. Fejer, and J. S. Harris, “Surface emitting second harmonic generation in vertical resonator,” Electron. Lett. 27, 1882–1884 (1991).
  30. Y. J. Ding, J. B. Khurgin, and S. J. Lee, “Cavity-enhanced and quasi-phase-matched optical frequency doublers in surface-emitting geometry,” J. Opt. Soc. Am. B 12, 1586–1594 (1995).
  31. R. C. Eckard, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
  32. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. 9, 530–541 (1973).
  33. R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
  34. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), p. 132.
  35. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989).
  36. N. Hashizume, M. Ohashi, T. Kondo, and R. Ito, “Optical harmonic generation in multilayered structures: a comprehensive analysis,” J. Opt. Soc. Am. B 12, 1894–1904 (1995).
  37. A. Yariv, Quantum Electronics (Wiley, New York, 1989), p. 389.
  38. V. Berger, Second Harmonic Generation in a Metal-Semiconductor-Metal Monolithic Cavity (Plenum, Cargese, France, 1995).
  39. D. E. Thomson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs “stack of plates” using high power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
  40. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  41. V. Berger, “Second harmonic generation using a non birefringent material in a doubly resonant monolithic cavity,” J. Nonlinear Opt. Mater. (to be published).
  42. V. R. Costich, “Coatings for 1, 2, even 3 wavelengths,” Laser Focus 41–45 (1969).
  43. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 971–973 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited