OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 6 — Jun. 1, 1997
  • pp: 1371–1379

Controlling soliton perturbations with phase-sensitive amplification

Christopher G. Goedde, William L. Kath, and Prem Kumar  »View Author Affiliations

JOSA B, Vol. 14, Issue 6, pp. 1371-1379 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Short optical pulses in nonlinear fibers are susceptible to a variety of higher-order physical effects, including the Raman self-frequency shift and cubic and nonlinear dispersions. These effects directly modify pulse propagation and contribute to noise-induced phenomena such as the Gordon–Haus jitter. We show that phase-sensitive amplification, if used to compensate for loss, acts as a restoring force in frequency and compensates for the Raman self-frequency shift. Furthermore, phase-sensitive amplification controls the Gordon–Haus jitter, including the contributions of the Raman self-frequency shift and the third-order dispersion.

© 1997 Optical Society of America

Christopher G. Goedde, William L. Kath, and Prem Kumar, "Controlling soliton perturbations with phase-sensitive amplification," J. Opt. Soc. Am. B 14, 1371-1379 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. S. Bergano, “Undersea lightwave transmission systems using Er-doped fiber amplifiers,” Opt. Photonics News 4(1), 8–14 (1993). [CrossRef]
  2. N. Bergano, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13, 879–888 (1995). [CrossRef]
  3. A. Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1990). [CrossRef] [PubMed]
  4. L. F. Mollenauer, S. G. Evangelides, Jr., and H. A. Haus, “Long-distance soliton propagation using lumped amplifiers and dispersion shifted fiber,” J. Lightwave Technol. 9, 194–197 (1991). [CrossRef]
  5. L. F. Mollenauer, M. J. Neubelt, S. G. Evangelides, J. P. Gordon, J. R. Simpson, and L. G. Cohen, “Experimental study of soliton transmission over more than 10, 000 km in dispersion-shifted fiber,” Opt. Lett. 15, 1203–1205 (1990). [CrossRef] [PubMed]
  6. E. Desurvire, Erbium-Doped Fiber Amplifiers: Theory and Applications (Wiley, New York, 1994).
  7. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]
  8. A. Mecozzi, J. Moores, H. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991). [CrossRef] [PubMed]
  9. Y. Kodama and A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon–Haus effect,” Opt. Lett. 17, 31–33 (1992). [CrossRef] [PubMed]
  10. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, “The sliding-frequency guiding filter: an improved form of soliton jitter control,” Opt. Lett. 17, 1575–1577 (1992). [CrossRef] [PubMed]
  11. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, “Measurement of timing jitter in filter-guided soliton transmission at 10 Gbits/s and achievement of 375 Gbit/s-Mm, error-free, at 12.5 and 15 Gbits/s,” Opt. Lett. 19, 704–706 (1994). [CrossRef] [PubMed]
  12. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single channel, and over more than 13 Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993). [CrossRef]
  13. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301–1304 (1988). [CrossRef]
  14. M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” IEEE Photonics Technol. Lett. 4, 497–500 (1992). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989).
  16. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  17. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  18. C. G. Goedde, W. L. Kath, and P. Kumar, “Compensation of the soliton self-frequency shift with phase-sensitive amplifiers,” Opt. Lett. 19, 2077–2079 (1994). [CrossRef] [PubMed]
  19. H. P. Yuen, “Reduction of quantum fluctuation and suppression of the Gordon–Haus effect with phase-sensitive linear amplifiers,” Opt. Lett. 17, 73–75 (1992). [CrossRef] [PubMed]
  20. S.-H. Lee, Ph. D. dissertation (Northwestern University, Evanston, Ill., 1992).
  21. I. H. Deutsch and I. Abram, “Reduction of quantum noise in soliton propagation by using phase sensitive amplification,” J. Opt. Soc. Am. B 11, 2303–2313 (1994). [CrossRef]
  22. A. Mecozzi, W. L. Kath, P. Kumar, and C. G. Goedde, “Long-term storage of a soliton bit stream by use of phase-sensitive amplification,” Opt. Lett. 19, 2050–2052 (1994). [CrossRef] [PubMed]
  23. J. N. Kutz, C. V. Hile, W. L. Kath, R.-D. Li, and P. Kumar, “Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplification,” J. Opt. Soc. Am. B 11, 2112–2123 (1994). [CrossRef]
  24. C. Kim and P. Kumar, “Quadrature-squeezed light detection using a self-generated matched local oscillator,” Phys. Rev. Lett. 73, 1605–1608 (1994). [CrossRef] [PubMed]
  25. W. Sohler and H. Suche, “Optical parametric amplification in Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 37, 255–257 (1980). [CrossRef]
  26. S. Helmfrid, F. Laurell, and G. Arvidsson, “Optical parametric amplification of a 1.54 μm single-mode DFB laser in a Ti:LiNbO3 waveguide,” J. Lightwave Technol. 11, 1459–1469 (1993). [CrossRef]
  27. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995). [CrossRef] [PubMed]
  28. M. Shirasaki and H. A. Haus, “Squeezing of pulses in a nonlinear interferometer,” J. Opt. Soc. Am. B 7, 30–34 (1990). [CrossRef]
  29. M. E. Marhic, C. H. Hsia, and J.-M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27, 210–211 (1991). [CrossRef]
  30. G. Bartolini, R.-D. Li, P. Kumar, W. Riha, and K. V. Reddy, “1.5 μm phase-sensitive amplifier for ultra-high speed communications,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 202–203.
  31. A. Takada and W. Imajuki, “Amplitude noise suppression by using high-gain phase sensitive amplifier as a limiting amplifier,” Electron. Lett. 32, 677–679 (1996). [CrossRef]
  32. H. A. Haus, “Quantum noise in a solitonlike repeater system,” J. Opt. Soc. Am. B 8, 1122–1126 (1991). [CrossRef]
  33. A. Mecozzi, “Long-distance soliton transmission with filtering,” J. Opt. Soc. Am. B 10, 2321–2330 (1993). [CrossRef]
  34. B. Friedman, Principles and Techniques of Applied Mathematics (Wiley, New York, 1956).
  35. J. D. Moores, W. S. Wong, and H. A. Haus, “Stability and timing maintenance in soliton transmission and storage rings,” Opt. Commun. 113, 153–175 (1994). [CrossRef]
  36. Y. Kodama and A. Hasegawa, “Theoretical foundation of optical-soliton concept in fibers,” Prog. Opt. 30, 205–259 (1992). [CrossRef]
  37. V. I. Karpman and E. M. Maslov, “Perturbation theory for solitons,” Sov. Phys. JETP 46, 281–291 (1977).
  38. H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach,” J. Opt. Soc. Am. B 7, 386–392 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited