Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Controlling soliton perturbations with phase-sensitive amplification

Not Accessible

Your library or personal account may give you access

Abstract

Short optical pulses in nonlinear fibers are susceptible to a variety of higher-order physical effects, including the Raman self-frequency shift and cubic and nonlinear dispersions. These effects directly modify pulse propagation and contribute to noise-induced phenomena such as the Gordon–Haus jitter. We show that phase-sensitive amplification, if used to compensate for loss, acts as a restoring force in frequency and compensates for the Raman self-frequency shift. Furthermore, phase-sensitive amplification controls the Gordon–Haus jitter, including the contributions of the Raman self-frequency shift and the third-order dispersion.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Reduction of quantum noise in soliton propagation by phase-sensitive amplification

I. H. Deutsch and I. Abram
J. Opt. Soc. Am. B 11(11) 2303-2313 (1994)

Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplifiers

J. Nathan Kutz, Cheryl V. Hile, William L. Kath, Ruo-Ding Li, and Prem Kumar
J. Opt. Soc. Am. B 11(10) 2112-2123 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (66)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved