OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 14, Iss. 6 — Jun. 1, 1997
  • pp: 1484–1495

Third-order dispersion radiation in solid-state solitary lasers

Marco Santagiustina  »View Author Affiliations


JOSA B, Vol. 14, Issue 6, pp. 1484-1495 (1997)
http://dx.doi.org/10.1364/JOSAB.14.001484


View Full Text Article

Acrobat PDF (304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of the third-order dispersion on the dynamics of solid-state solitary lasers are studied by means of the soliton perturbation theory, with the radiation emitted by the solitary pulse also taken into account. A set of equations for the soliton amplitude and frequency is found and studied. The equations include the contribution of radiation to the frequency shift of the solitary pulse, which is calculated for the first time to our knowledge. The results are in very good agreement with the numerical solutions of the master equation and with the reported experiments.

© 1997 Optical Society of America

Citation
Marco Santagiustina, "Third-order dispersion radiation in solid-state solitary lasers," J. Opt. Soc. Am. B 14, 1484-1495 (1997)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-6-1484


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state laser,” IEEE J. Quantum Electron. QE-28, 2097–2121 (1992).
  2. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. QE-30, 1100–1114 (1994).
  3. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984).
  4. T. Brabec, C. Spielmann, and F. Krausz, “Mode locking in solitary lasers,” Opt. Lett. 16, 1961–1963 (1991).
  5. K. J. Blow and D. Wood, “Mode-locked lasers with nonlinear external cavities,” J. Opt. Soc. Am. B 5, 629–632 (1988).
  6. E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse modelocking,” J. Opt. Soc. Am. B 6, 1736–1743 (1989).
  7. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
  8. T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992).
  9. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
  10. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, and R. Szipocs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
  11. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, “Additive-pulse-compression mode locking of a neodymium fiber laser,” Opt. Lett. 16, 244–246 (1991).
  12. M. E. Fermann, M. J. Andrejco, Y. Silberberg, and A. M. Weiner, “Generation of pulses shorter than 200 fs from a passively mode-locked Er fiber laser,” Opt. Lett. 18, 48–50 (1993).
  13. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990).
  14. I. N. Duling III, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
  15. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
  16. L. Spinelli, B. Couilland, N. Glodblatt, and D. K. Negus, “Starting and generation of sub-100 fs pulses in Ti:Al2O3 by self focusing,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.
  17. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. QE-28, 2086–2096 (1992).
  18. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. QE-23, 510–524 (1987).
  19. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
  20. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
  21. H. H. Kuehl and C. Y. Zhang, “Effects of higher-order dispersion on envelope solitons,” Phys. Fluids B 2, 889–900 (1990).
  22. N. N. Akhmediev and M. Karlsson, “Cherenkov radiation by solitons in optical fibers,” NLGW Topical Meeting, 6, paper NFB6-1, (1995); “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
  23. J. N. Elgin, “Soliton propagation in an optical fiber with third-order dispersion,” Opt. Lett. 17, 1409–1410 (1992).
  24. J. N. Elgin, “Perturbations of optical solitons,” Phys. Rev. A 47, 4331–4341 (1993).
  25. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995).
  26. V. I. Karpman and E. M. Maslov, “Perturbation theory for solitons,” Sov. Phys. JETP 46, 281–291 (1977).
  27. I. M. Uzunov, M. Golles, and F. Lederer, “Soliton interaction in the presence of bandwidth limited amplification near the zero-dispersion wavelength,” Electron. Lett. 30, 882–883 (1994).
  28. I. M. Uzunov, M. Golles, and F. Lederer, “Stabilization of soliton trains in optical fibers in the presence of third-order dispersion,” J. Opt. Soc. Am. B 12, 1164–1166 (1995).
  29. V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E 47, 2073–2082 (1993).
  30. H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett. 18, 51–53 (1993).
  31. T. Brabec and S. M. J. Kelly, “Third-order dispersion as a limiting factor to mode locking in femtosecond solitary lasers,” Opt. Lett. 18, 2002–2004 (1993).
  32. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion,” Opt. Lett. 18, 54–56 (1993).
  33. Y. Kodama, M. Romagnoli, S. Wabnitz, and M. Midrio, “Role of third-order dispersion on soliton instabilities and interactions in optical fibers,” Opt. Lett. 19, 165–167 (1994).
  34. E. A. Golovchenko, A. N. Pilipetskii, C. R. Menyuk, J. P. Gordon, and L. F. Mollenauer, “Soliton propagation with up- and down-sliding-frequency guiding filters,” Opt. Lett. 20, 539–541 (1995).
  35. A. Hasegawa and Y. Kodama, “Guiding-center soliton,” Phys. Rev. Lett. 66, 161–164 (1991); “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1991).
  36. S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, “Average soliton dynamics of a high-gain erbium fiber laser,” Opt. Lett. 16, 1337–1339 (1991).
  37. Y. Kodama, M. Romagnoli, and S. Wabnitz, “Soliton stability and interactions in fibre lasers,” Electron. Lett. 28, 1981–1983 (1992).
  38. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
  39. P. L. Chu and C. Desem, “Effect of third-order dispersion of optical fibre on soliton interaction,” Electron. Lett. 21, 228, 229 (1985); “Reducing soliton interaction in single-mode optical fibres,” IEE Proc. J. 134, 145–151 (1985).
  40. S. Wabnitz, Y. Kodama, and A. B. Aceves, “Control of optical soliton interactions,” Opt. Fiber Technol. 1, 187–217 (1995).
  41. V. V. Afanasjev, “Soliton singularity in the system with nonlinear gain,” Opt. Lett. 20, 704–706 (1995).
  42. A. C. Newell, “The inverse scattering transform, nonlinear waves, singular perturbations and synchronized solitons,” Rocky Mount. J. Math. 8, 25–52 (1978).
  43. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1992).
  44. G. R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett. 16, 624–626 (1991).
  45. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9, 91–97 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited