OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 7 — Jul. 1, 1997
  • pp: 1664–1671

Comparison of beam-smoothing methods for direct-drive inertial confinement fusion

Joshua E. Rothenberg  »View Author Affiliations

JOSA B, Vol. 14, Issue 7, pp. 1664-1671 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analysis and numerical simulations of the smoothing of the speckled illumination of a direct-drive inertial confinement fusion target are presented. In particular, the spatial spectrum of the integrated target fluence is compared across smoothing methods. Two categories of smoothing methods are considered. In one method spatially incoherent light is amplified and directed onto the target, whereas in the other the light is phase modulated and spectrally dispersed before being amplified and then focused through a random phase plate onto the target. The dependence of the smoothed spatial spectrum on the characteristics of phase modulation and dispersion is examined for both sinusoidal and more general phase modulation. It is shown that smoothing with nonsinusoidal phase modulation can result in spatial spectra that are substantially identical to that obtained with the incoherent light method in which random phase plates are present in both methods and identical beam divergence is assumed.

© 1997 Optical Society of America

Joshua E. Rothenberg, "Comparison of beam-smoothing methods for direct-drive inertial confinement fusion," J. Opt. Soc. Am. B 14, 1664-1671 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994). [CrossRef]
  2. R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983). [CrossRef]
  3. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984). [CrossRef]
  4. R. H. Lehmberg and J. Goldhar, “Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers,” Fusion Technology 11, 532–541 (1987).
  5. D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988). [CrossRef]
  6. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989). [CrossRef]
  7. D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993). [CrossRef]
  8. H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993). [CrossRef]
  9. H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993). [CrossRef]
  10. R. S. Craxton and S. Skupsky, “2D SSD and polarization wedges for OMEGA and the NIF,” Bull. Am. Phys. Soc. 40, 1826 (1995).
  11. J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995). [CrossRef]
  12. J. E. Rothenberg, “Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 634–644 (1995). [CrossRef]
  13. H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability of the Nova Laser,” Lawrence Livermore National Laboratory ICF Quarterly Report UCRL-LR-105821–91–1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990), Vol. 1, pp. 28–38.
  14. D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993). [CrossRef]
  15. K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993). [CrossRef]
  16. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929–934 (1986). [CrossRef]
  17. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 164–168; 238–243.
  18. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty ed., Springer-Verlag, New York, 1984), pp. 9–46.
  19. R. H. Lehmberg, “Spatial profile distortion of harmonically-converted partially-coherent light,” Opt. Commun. 130, 51–56 (1996). [CrossRef]
  20. M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990). [CrossRef]
  21. Ref. 18, pp. 63–74.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited