OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 14, Iss. 7 — Jul. 1, 1997
  • pp: 1723–1734

Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field

Philippe Delaye, Alain Blouin, Denis Drolet, Louis-Anne de Montmorillon, Gérald Roosen, and Jean-Pierre Monchalin  »View Author Affiliations


JOSA B, Vol. 14, Issue 7, pp. 1723-1734 (1997)
http://dx.doi.org/10.1364/JOSAB.14.001723


View Full Text Article

Enhanced HTML    Acrobat PDF (308 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The characteristics of an interferometric system based on two-wave mixing at 1.06 µm in photorefractive InP:Fe under an applied field for the detection of ultrasonic motion of a scattering surface are described. A theoretical analysis of possible configurations for the detection of small phase modulation in the undepleted-pump approximation is presented. Experimental assessment of the device for both cw and pulse regimes is performed: The sensitivity, the étendue, the response time, and the behavior under ambient vibrations or moving inspected samples are provided. This adaptive device presents many features appropriate for industrial inspection and compares advantageously with the passive confocal Fabry–Perot device that is now widely used.

© 1997 Optical Society of America

Citation
Philippe Delaye, Alain Blouin, Denis Drolet, Louis-Anne de Montmorillon, Gérald Roosen, and Jean-Pierre Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-7-1723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Scruby and L. E. Drain, Laser-Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990).
  2. J. P. Monchalin, “Progress towards the application of laser-ultrasonics in industry,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12A, p. 495.
  3. J. P. Monchalin and R. Héon, “Laser ultrasonic generation and optical detection with a confocal Fabry–Pérot interferometer,” Mater. Eval. 44, 1231 (1986).
  4. F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369 (1990). [CrossRef]
  5. R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233 (1991). [CrossRef]
  6. A. Blouin and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932 (1994). [CrossRef]
  7. D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high-bandwidth, auto-compensating, laser-based ultrasound detectors,” in Materials Science Forum (Transtec, Zurich, Switzerland, 1996), Vol. 210, Part 1, p. 425.
  8. M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987). [CrossRef]
  9. P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995). [CrossRef]
  10. J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485 (1986). [CrossRef] [PubMed]
  11. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979); “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961 (1979). [CrossRef]
  12. M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982). [CrossRef]
  13. H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988). [CrossRef]
  14. G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990). [CrossRef]
  15. F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207 (1994). [CrossRef]
  16. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588 (1966). [CrossRef] [PubMed]
  17. P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995). [CrossRef]
  18. G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988). [CrossRef]
  19. G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989). [CrossRef]
  20. P. Delaye, P. U. Halter, and G. Roosen, “Thermally induced hole–electron competition in photorefractive InP:Fe due to the Fe2+ excited state,” J. Opt. Soc. Am. B 7, 2268 (1990). [CrossRef]
  21. R. S. Rana, D. D. Nolte, R. Stelt, and E. M. Monberg, “Temperature dependence of the photorefractive effect in InP:Fe: role of multiple defects,” J. Opt. Soc. Am. B 9, 1614 (1992). [CrossRef]
  22. J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988). [CrossRef]
  23. T. Chang, A. Chiou, and P. Yeh, “Cross-polarization photorefractive two-beam coupling in gallium arsenide,” J. Opt. Soc. Am. B 5, 1724 (1988). [CrossRef]
  24. P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993). [CrossRef]
  25. D. Drolet, A. Blouin, C. Néron, and J. P. Monchalin, “Specifications of an ultrasonic receiver based on two-wave mixing in photorefractive GaAs implemented in laser-ultrasonic system,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1996), Vol. 15, p. 637.
  26. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986). [CrossRef]
  27. Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited