OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 14, Iss. 7 — Jul. 1, 1997
  • pp: 1772–1781

Photovoltaic spatial solitons

Mordechai Segev, George C. Valley, Matthew C. Bashaw, Minoru Taya, and Martin M. Fejer  »View Author Affiliations


JOSA B, Vol. 14, Issue 7, pp. 1772-1781 (1997)
http://dx.doi.org/10.1364/JOSAB.14.001772


View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze self-trapping of one-dimensional optical beams in photorefractive, photovoltaic media for open- and closed-circuit realizations. We show that a passive load (resistor) in the external circuit can be used for switching of dark photovoltaic solitons. Dark solitons in a short-circuited crystal can be obtained for a much smaller nonlinearity than in open-circuit conditions. Shorting the crystal affects bright solitons very little.

© 1997 Optical Society of America

Citation
Mordechai Segev, George C. Valley, Matthew C. Bashaw, Minoru Taya, and Martin M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-14-7-1772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. In this paper, as in all our other papers on self-trapping of optical beams in photorefractive media, we use the term “soliton” in conjunction with nondiffracting self-trapped optical beams. That is, we use the broader definition of solitons that includes those in nonintegrable systems, as defined by V. E. Zakharov and B. A. Malomed, in Physical Encyclopedia, A. M. Prokhorov, ed. (Great Russian Encyclopedia, Moscow, 1994), p. 571, and also as discussed in detail by V. G. Makhankov in his review paper, Phys. Rep. 35, 1 (1978).
  2. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992). [CrossRef] [PubMed]
  3. B. Crosignani, M. Segev, D. Engin, P. DiPorto, A. Yariv, and G. Salamo, J. Opt. Soc. Am. B 10, 449 (1993). [CrossRef]
  4. G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp, and R. Neurgaonkar, Phys. Rev. Lett. 71, 533 (1993). [CrossRef] [PubMed]
  5. M. Segev, A. Yariv, G. Salamo, G. Duree, J. Shultz, B. Crosignani, P. DiPorto, and E. Sharp, Opt. Photon. News 4(12), 8 (1993).
  6. M. Segev, A. Yariv, B. Crosignani, P. DiPorto, G. Duree, G. Salamo, and E. Sharp, Opt. Lett. 19, 1296 (1994). [CrossRef] [PubMed]
  7. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, and E. Sharp, Opt. Lett. 19, 1195 (1994). [CrossRef] [PubMed]
  8. D. N. Christodoulides and M. I. Carvalho, Opt. Lett. 19, 1714 (1994). [CrossRef] [PubMed]
  9. M. Segev, G. Salamo, G. Duree, M. Morin, B. Crosignani, P. DiPorto, and A. Yariv, Opt. Photon. News 5(12), 9 (1994). [CrossRef]
  10. G. Duree, M. Morin, G. Salamo, M. Segev, A. Yariv, B. Crosignani, and P. DiPorto, Phys. Rev. Lett. 74, 1978 (1995). [CrossRef] [PubMed]
  11. M. Morin, G. Duree, G. Salamo, and M. Segev, Opt. Lett. 20, 2066 (1995). [CrossRef] [PubMed]
  12. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994). [CrossRef] [PubMed]
  13. D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12, 1628 (1995). [CrossRef]
  14. S. R. Singh and D. N. Christodoulides, Opt. Commun. 118, 569 (1995). [CrossRef]
  15. M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996). [CrossRef]
  16. Steady-state self-focusing effects in biased photorefractive crystals were first observed by M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sanchez-Mondragón, S. Stepanov, and V. Vysloukh, Appl. Phys. Lett. 64, 408 (1994). [CrossRef]
  17. Screening solitons were first observed by M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, Electron. Lett. 31, 826 (1995). [CrossRef]
  18. M. Shih, P. Leach, M. Segev, M. Garrett, G. Salamo, and G. C. Valley, Opt. Lett. 21, 324 (1996). [CrossRef] [PubMed]
  19. K. Kos, H. Ming, G. Salamo, M. Shih, M. Segev, and G. C. Valley, Rapid Comm., Phys. Rev. E 53, R4330 (1996). [CrossRef]
  20. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. Garrett, and G. C. Valley, Opt. Lett. 21, 629 (1996). [CrossRef] [PubMed]
  21. Z. Chen, M. Mitchell, and M. Segev, Opt. Lett. 21, 716 (1996). [CrossRef] [PubMed]
  22. M. D. Iturbe-Castillo, J. J. Sanchez-Mondragón, S. I. Stepanov, M. B. Klein, and B. A. Wechsler, Opt. Commun. 118, 515 (1995). [CrossRef]
  23. M. Shih, M. Segev, and G. Salamo, Opt. Lett. 21, 931 (1996). [CrossRef] [PubMed]
  24. M. Shih and M. Segev, Opt. Lett. 21, 1538 (1996). [CrossRef] [PubMed]
  25. M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996). [CrossRef]
  26. H. Meng, G. Salamo, M. Shih, and M. Segev, Opt. Lett. 22, 448 (1997); W. Krolikowski and S. A. Holstrom, Opt. Lett. 22, 369 (1997); and G. C. Garcia-Quirino, M. D. Iturbe-Castillo, V. A. Vysloukh, J. J. Sanchez-Mondragon, S. I. Stepanov, G. Lugo-Martinez, and G. E. Torres-Cisneros, Opt. Lett. OPLEDP 22, 154 (1997). [CrossRef] [PubMed]
  27. M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, Opt. Lett. 20, 1764 (1995). [CrossRef]
  28. S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, Opt. Lett. 20, 2177 (1995). [CrossRef]
  29. M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, Phys. Rev. E 53, R53 (1996). [CrossRef]
  30. D. N. Christodoulides, S. R. Singh, M. I. Carvalho, and M. Segev, Appl. Phys. Lett. 68, 1763 (1996). [CrossRef]
  31. W. Krolikowski, N. Akhmediev, and B. Luther-Davies, Opt. Lett. 21, 782 (1996). [CrossRef]
  32. Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, Opt. Lett. 21, 1436 (1996). [CrossRef] [PubMed]
  33. Z. Chen, M. Segev, T. Coskun, D. N. Christodoulides, Y. Kivshar, and V. V. Afanasjev, Opt. Lett. 21, 1821 (1996). [CrossRef] [PubMed]
  34. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. Bashaw, Phys. Rev. A 50, R4457 (1994). [CrossRef]
  35. M. Taya, M. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, Phys. Rev. A 52, 3095 (1995). [CrossRef] [PubMed]
  36. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, Opt. Lett. 21, 943 (1996). [CrossRef] [PubMed]
  37. M. Chauvet, S. A. Hawkins, G. Salamo, M. Segev, D. F. Bliss, and G. Bryant, Opt. Lett. 21, 1333 (1996). [CrossRef] [PubMed]
  38. M. Mitchell, Z. Chen, M. Shih, and M. Segev, Phys. Rev. Lett. 77, 490 (1996). [CrossRef] [PubMed]
  39. D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, Phys. Rev. Lett. 78, 646 (1997). [CrossRef]
  40. S. Gatz and J. Herrmann, J. Opt. Soc. Am. B 8, 2296 (1991). [CrossRef]
  41. G. C. Valley and J. Lam, in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, New York, 1988), Chap. 3.
  42. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, New York, 1986).
  43. B. I. Sturman, E. Shamonina, M. Mann, and K. H. Ringhofer, J. Opt. Soc. Am. B 12, 1642 (1995). [CrossRef]
  44. B. I. Sturman and V. M. Fridkin, in The Photovoltaic and Photorefractive Effect in Non-Centrosymmetric Materials (Gordon & Breach, Philadelphia, Pa., 1992).
  45. We note that photovoltaic gray solitons, which propagate at some angle with respect to the optical axis z, are also pos-sible. In fact, the Y-junction solitons observed in the research reported Ref. 36 can be considered a gray pair once the channels are well separated. The theory of photovoltaic gray solitons resembles that of gray screening solitons (described in Ref. 13).
  46. More-complicated configurations can lead to tensor effects and to vector solitons, as described in Ref. 25.
  47. As explained in Ref. 44, photovoltaic current must be driven by a real optical field (photons) and cannot be driven by thermal excitations. The main argument is that the photovoltaic current is fundamentally a polar current, rather than noise in the current as Idark is. If photovoltaic dark irradiance could exist, it would permit polar currents driven by temperature and thereby perpetual-motion machines.
  48. S. Orlov, A. Yariv, and M. Segev, Appl. Phys. Lett. 68, 1610 (1996). [CrossRef]
  49. In fact, the most significant correction factor is to Eq. (8), which leads to self-bending effects. For screening solitons, self-bending was predicted in Ref. 14 and observed in the research reported Refs. 18, 24, 25, and 32).
  50. S. Gatz and J. Herrmann, IEEE J. Quantum. Electron. 28, 1732 (1992). [CrossRef]
  51. We note that a small negative offset in the induced refractive index profile Δn(ξ) caused by nonzero current is present in the closed-circuit case. This means that far away from ξ=0, Δn becomes negative. However, at u0 > 0.05 this effect is almost unnoticeable.
  52. The idea to treat solitons as the guided modes of the waveguides that they induce was pioneered by A. W. Synder and A. P. Sheppard, Opt. Lett. 18, 482 (1993) and by Y. Silberberg, “Self-induced waveguide: spatial optical solitons,” in Anisotropic and Nonlinear Optical Waveguides, G. C. Someda and G. I. Stegeman, eds. (Elsevier, Amsterdam, 1992). See also the review by A. W. Synder, D. J. Mitchell, and Y. Kivshar, Mod. Phys. Lett. B 9, 1479 (1995). [CrossRef]
  53. This observation is true in steady state only. We expect that, if a bright photovoltaic soliton at u0≤0.1 is switched from J=0 to J=Jmax, there will be a transient effect, because the induced refractive index Δn(ξ) has to readjust to a new offset value, as shown in Fig. 8.
  54. Switching of solitons by use of a change in a single parameter that causes large deviations in the existence curve was used in the coupled soliton pairs experiments of Refs. 32 and 33.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited