OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 14, Iss. 9 — Sep. 1, 1997
  • pp: 2268–2294

Absolute scale of second-order nonlinear-optical coefficients

Ichiro Shoji, Takashi Kondo, Ayako Kitamoto, Masayuki Shirane, and Ryoichi Ito  »View Author Affiliations

JOSA B, Vol. 14, Issue 9, pp. 2268-2294 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absolute scale of the second-order nonlinear-optical coefficients of several important nonlinear-optical materials has been obtained with improved accuracy. Second-harmonic generation, parametric fluorescence, and difference-frequency generation measurements have been made at several wavelengths in the near-infrared region. The second-harmonic generation measurement was performed at the fundamental wavelengths of 1.548, 1.533, 1.313, 1.064, and 0.852 µm. The materials measured included congruent LiNbO3,1%MgO:LiNbO3,5%MgO:LiNbO3,LiTaO3,KNbO3,KTiOPO4,KH2PO4, quartz, GaAs, GaP, α-ZnS, CdS, ZnSe, and CdTe. We made the parametric fluorescence measurement to determine the nonlinear-optical coefficients of congruent LiNbO3 and 5%MgO:LiNbO3 at pump wavelengths of 0.532 and 0.488 µm. We made the difference-frequency generation measurement for congruent LiNbO3 at a pump wavelength of 0.532 µm. The second-harmonic generation, parametric fluorescence, and difference-frequency generation measurements yielded consistent data on the nonlinear-optical coefficients of the materials. We found that many of the currently accepted standard values are overestimated because of neglect of the multiple-reflection effect in (nearly) plane-parallel-plate samples. The dispersion of the nonlinear-optical coefficients showed that Miller’s Δ is barely constant over the wavelength range measured and thus that Miller’s rule is not so good as other methods for wavelength scaling of the nonlinear-optical coefficients.

© 1997 Optical Society of America

Ichiro Shoji, Takashi Kondo, Ayako Kitamoto, Masayuki Shirane, and Ryoichi Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971). [CrossRef]
  3. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976). [CrossRef]
  4. H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992). [CrossRef] [PubMed]
  5. E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, “Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence,” Opt. Lett. 19, 168–170 (1994). [CrossRef] [PubMed]
  6. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994). [CrossRef]
  7. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990). [CrossRef]
  8. P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974). [CrossRef]
  9. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992). [CrossRef]
  10. K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm,” Appl. Opt. 34, 8276–8282 (1995). [CrossRef] [PubMed]
  11. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  12. S. K. Kurtz, J. Jerphagnon, and M. M. Choy, “Nonlinear dielectric susceptibilities,” in Landolt–Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, K.-H. Hellwege and A. M. Hellwege, eds. (Springer-Verlag, Berlin, 1979), Group III, Vol. 11, Chap. 6; updated edition (Springer-Verlag, Berlin, 1984), Vol. 18, Chap. S6.
  13. S. Singh, “Nonlinear optical materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1986), Vol. III, Part 1.
  14. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  15. R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988). [CrossRef]
  16. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964). [CrossRef]
  17. C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966). [CrossRef]
  18. C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators, and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968). [CrossRef]
  19. S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51, 6928–6931 (1995). [CrossRef]
  20. A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995). [CrossRef]
  21. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990). [CrossRef]
  22. X. Cao, B. Rose, R. V. Ramaswamy, and R. Srivastava, “Efficient direct diode-laser frequency doubling in quasi-phase-matched LiNbO3 waveguides,” Opt. Lett. 17, 795–797 (1992). [CrossRef] [PubMed]
  23. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993). [CrossRef]
  24. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994). [CrossRef]
  25. K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991). [CrossRef]
  26. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988). [CrossRef]
  27. D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990). [CrossRef]
  28. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964). [CrossRef]
  29. D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148, 302–312 (1966). [CrossRef]
  30. R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169–171 (1966). [CrossRef]
  31. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968). [CrossRef]
  32. J. E. Bjorkholm, “Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3,” IEEE J. Quantum Electron. QE-4, 970–972 (1968); J. E. Bjorkholm, “Correction to ‘Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3, ’ ” IEEE J. Quantum Electron. QE-5, 260 (1969). [CrossRef]
  33. W. F. Hagen and P. C. Magnante, “Efficient second-harmonic generation with diffraction-limited and high-spectral-radiance Nd-glass lasers,” J. Appl. Phys. 40, 219–224 (1969). [CrossRef]
  34. B. F. Levine and C. G. Bethea, “Nonlinear susceptibility of GaP; relative measurement and use of measured values to determine a better absolute value,” Appl. Phys. Lett. 20, 272–275 (1972). [CrossRef]
  35. G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971). [CrossRef]
  36. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  37. T. Furuse and I. Sakuma, “Internal second harmonic generation in InGaAsP DH lasers,” Opt. Commun. 35, 413–416 (1980). [CrossRef]
  38. N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987). [CrossRef]
  39. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970). [CrossRef]
  40. P. S. Bechthold and S. Haussühl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977). [CrossRef]
  41. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995). [CrossRef]
  42. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992). [CrossRef]
  43. See, for example, R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  44. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982). [CrossRef]
  45. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).
  46. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965). [CrossRef]
  47. B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992). [CrossRef]
  48. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989). [CrossRef]
  49. D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys. 35, 1241–1242 (1964). [CrossRef]
  50. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986). [CrossRef]
  51. D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337–3343 (1968). [CrossRef]
  52. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983). [CrossRef]
  53. T. M. Bieniewski and S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am. 53, 496–497 (1963). [CrossRef]
  54. D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539–542 (1964). [CrossRef]
  55. S. Ozaki and S. Adachi, “Optical constants of ZnSexTe1−x ternary alloys,” Jpn. J. Appl. Phys. 32, 2620–2625 (1993). [CrossRef]
  56. Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992). [CrossRef]
  57. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993). [CrossRef]
  58. R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981). [CrossRef]
  59. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987). [CrossRef]
  60. J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970). [CrossRef]
  61. J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984). [CrossRef]
  62. Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974). [CrossRef]
  63. T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995). [CrossRef]
  64. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987). [CrossRef] [PubMed]
  65. D. W. Anthon and C. D. Crowder, “Wavelength dependent phase matching in KTP,” Appl. Opt. 27, 2650–2652 (1988). [CrossRef] [PubMed]
  66. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991). [CrossRef]
  67. T. Kishimoto and M. Itoh, “Physical and nonlinear properties of ferroelectric KTiOPO4,” Solid State Phys. (Japan) 25, 597–608 (1990).
  68. B. Boulanger, J. P. Fève, G. Marnier, B. Ménaert, X. Cabirol, P. Villeval, and C. Bonnin, “Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements,” J. Opt. Soc. Am. B 11, 750–757 (1994). [CrossRef]
  69. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976). [CrossRef]
  70. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). [CrossRef] [PubMed]
  71. R. J. Bolt and M. van der Mooren, “Single shot bulk damagethreshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100, 399–410 (1993). [CrossRef]
  72. R. A. Soref and H. W. Moos, “Optical second-harmonic generation in ZnS–CdS and CdS–CdSe alloys,” J. Appl. Phys. 35, 2152–2158 (1964). [CrossRef]
  73. R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965). [CrossRef]
  74. W. D. Johnston, Jr., and I. P. Kaminow, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209–1211 (1969). [CrossRef]
  75. W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959). [CrossRef]
  76. R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited