OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 122–141

Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

A. V. Smith, D. J. Armstrong, and W. J. Alford  »View Author Affiliations


JOSA B, Vol. 15, Issue 1, pp. 122-141 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000122


View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show by experiment and mathematical model that angular and frequency acceptance bandwidths for frequency mixing in a nonlinear crystal can often be improved by segmenting the crystal and reversing the spatial or temporal walk-off in alternating segments. We analyze nonlinear mixing primarily in real space, (x, t), rather than Fourier space, (k, ω), and show that acceptance bands for sum- and difference-frequency mixing can be increased by up to a factor equal to the number of crystal segments. We consider both high- and low-efficiency mixing as well as parametric gain, and show that in many cases of practical interest the increased bandwidth substantially improves conversion efficiency. We also attempt to clarify the role of acceptance bandwidths in frequency mixing.

© 1998 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Citation
A. V. Smith, D. J. Armstrong, and W. J. Alford, "Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals," J. Opt. Soc. Am. B 15, 122-141 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-1-122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hayata and M. Koshiba, “Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted β-BaB2O4,” Appl. Phys. Lett. 62, 2188–2190 (1993). [CrossRef]
  2. C. Radzewicz, Y. B. Band, G. W. Pearson, and J. S. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. Commun. 117, 295–302 (1995). [CrossRef]
  3. J. J. Zondy, M. Abed, and S. Khodja, “Twin-crystal walk-off-compensated type-II second harmonic generation: single-pass and cavity-enhanced experiments in KTiOPO4,” J. Opt. Soc. Am. B 11, 2368–2379 (1994). [CrossRef]
  4. V. D. Volosov, A. G. Kalintsev, and V. N. Krylov, “Suppression of degenerate parametric processes limiting frequency-doubling efficiency of crystals,” Sov. J. Quantum Electron. 6, 1163–1167 (1976); V. D. Volosov, A. G. Kalintsev, and V. N. Krylov, “Degenerate parametric processes in three-wave interactions in tandem crystals,” Sov. Tech. Phys. Lett. 2, 32–34 (1976); V. D. Volosov and A. G. Kalintsev, “Optimum optical second-harmonic generation in tandem crystals,” Sov. Tech. Phys. Lett. STPLD2 2, 373–375 (1976); V. D. Volosov, A. G. Kalintsev, and V. N. Krylov, “Phase effects in a double-pass frequency doubler,” Sov. Tech. Phys. Lett. STPLD2 5, 5–7 (1979). [CrossRef]
  5. M. A. Norton, D. Eimerl, C. A. Ebbers, S. P. Velsko, and C. S. Petty, “KD*P frequency doubler for high average power applications,” in Solid State Lasers, Proc. SPIE 1223, 75–83 (1990). [CrossRef]
  6. R. B. Andreev, K. V. Vetrov, V. D. Volosov, and A. G. Kalintsev, “Three-wave parametric processes in multicrystal nonlinear frequency converters,” Opt. Spectrosc. 65, 90–93 (1988).
  7. B. Ya. Zel’dovich, Yu. E. Kapitskii, and A. N. Chudinov, “Interference between second harmonics generated into different KTP crystals,” Sov. J. Quantum Electron. 20, 1120–1121 (1990). [CrossRef]
  8. L. K. Samanta, T. Tanagawa, and Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990). [CrossRef]
  9. M. Watanabe, K. Hayasaka, H. Imajo, and S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993). [CrossRef]
  10. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB-2O-4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952–1954 (1989). [CrossRef]
  11. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14, 460–464 (1997). [CrossRef]
  12. G. T. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun. 124, 292–294 (1996). [CrossRef]
  13. C. Xijie, D. Meilan, L. Jiapun, L. Tielxe, and Q. Wenhua, “Large-aperture high-efficiency frequency doubling using tandem KDP crystals,” Chin. Phys. 7, 1055–1060 (1987).
  14. J.-J. Zondy, M. Abed, S. Khodja, C. Bonnin, B. Rainaud, H. Albrecht, and D. Lupinsky, “Walkoff-compensated type-I and type-II SHG using twin-crystal AgGaSe2 and KTiOPO4 devices,” in Nonlinear Frequency Generation and Conversion, Proc. SPIE 2700, 66–72 (1996). [CrossRef]
  15. J. A. Fleck, Jr. and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73, 920–926 (1983). [CrossRef]
  16. M. A. Dreger and J. K. McIver, “Second-harmonic generation in a nonlinear, anisotropic medium with diffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990). [CrossRef]
  17. M. Trippenbach and Y. B. Band, “Propagation of light pulses in nonisotropic media,” J. Opt. Soc. Am. B 13, 1403–1411 (1995). [CrossRef]
  18. D. Eimerl, J. M. Auerbach, and P. W. Milonni, “Paraxial wave theory of second and third harmonic generation in uniaxial crystals,” J. Mod. Opt. 42, 1037–1064 (1995). [CrossRef]
  19. A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995). [CrossRef]
  20. A. V. Smith, computer code SNLO, Sandia National Laboratories, Albuquerque, N. M., 1997 (available from the authors at no charge).
  21. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  22. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992)
  23. J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81, 427–440 (1991). [CrossRef]
  24. J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for CW 10.2 μm SHG,” Opt. Commun. 119, 320–326 (1995). [CrossRef]
  25. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, New York, 1984).
  26. B. Boulanger, J. P. Feve, G. Marnier, B. Menaert, X. Cabirol, P. Villeval, and C. Bonnin, “Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements,” J. Opt. Soc. Am. B 11, 750–757 (1994). [CrossRef]
  27. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  28. S. X. Dou, D. Josse, and J. Zyss, “Comparison of collinear and one-beam noncritical noncollinear phase matching in optical parametric amplification,” J. Opt. Soc. Am. B 9, 1312–1319 (1992). [CrossRef]
  29. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995). [CrossRef]
  30. R. C. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. QE-20, 1178–1187 (1984). [CrossRef]
  31. D. R. White, E. L. Dawes, and J. H. Marburger, “Theory of second-harmonic generation with high-conversion efficiency,” IEEE J. Quantum Electron. QE-6, 793–796 (1970). [CrossRef]
  32. T. Ditmire, A. M. Rubenchik, D. Eimerl, and M. D. Perry, “Effects of cubic nonlinearity on frequency doubling of high-power laser pulses,” J. Opt. Soc. Am. B 13, 649–655 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited