OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 148–151

Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 148-151 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a physical model to explain peculiarities of photorefractive recording and dark decay detected in LiNbO3 crystals within temperature ranges below and above 200 °C. Distinctive features of our description are proximity of the activation energies for protons and thermally excited electrons and their competitive contributions to the charge transport.

© 1998 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2900) Holography : Optical storage materials
(160.2900) Materials : Optical storage materials

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3," J. Opt. Soc. Am. B 15, 148-151 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  2. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975). [CrossRef]
  3. W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979). [CrossRef]
  4. V. V. Kulikov, and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  5. H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981). [CrossRef]
  6. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  7. M. Carrascosa and F. Agulló-López, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990). [CrossRef]
  8. S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992). [CrossRef]
  9. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993). [CrossRef]
  10. M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993). [CrossRef]
  11. M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 9, 1791–1799 (1994). [CrossRef]
  12. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994). [CrossRef] [PubMed]
  13. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  14. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995). [CrossRef]
  15. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996). [CrossRef] [PubMed]
  16. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996). [CrossRef]
  17. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996). [CrossRef]
  18. K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997). [CrossRef]
  19. B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, 1992).
  20. V. M. Fridkin, Photoferroelectrics (Springer-Verlag, New York, 1979).
  21. P. Günter and J.-P. Huignard, Photorefractive Effects and Materials, Vol. 61 of Topics in Applied Physics (Springer-Verlag, New York, 1988), pp. 7–73. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited