OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 216–222

Temporal decorrelation of short laser pulses

J. Peatross and A. Rundquist  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 216-222 (1998)

View Full Text Article

Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a unique approach for extracting the temporal profile of ultrashort laser pulses from typical autocorrelation measurements. The use of the constraint that intensity is a nonnegative quantity enables an iterative numerical algorithm to reconstruct pulse shapes in a one-dimensional procedure. With the reconstruction of the intensity profile, the Gerchberg–Saxton algorithm can be used to retrieve the phase of the electric field from a spectral measurement. Because these procedures are carried out in one dimension, they are numerically much faster than two-dimensional techniques such as frequency-resolved optical gating. Their high computational efficiency can save substantial time by constructing good trial solutions for the more accurate but slower procedure of frequency-resolved optical gating.

© 1998 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.5010) Fourier optics and signal processing : Pattern recognition
(320.7100) Ultrafast optics : Ultrafast measurements

J. Peatross and A. Rundquist, "Temporal decorrelation of short laser pulses," J. Opt. Soc. Am. B 15, 216-222 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. P. Weber, “Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked lasers using nonlinear optics,” J. Appl. Phys. 38, 2231–2234 (1967).
  2. E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
  3. T. Andersson and S. T. Eng, “Determination of the pulse response from intensity autocorrelation measurements of ultrashort laser pulses,” Opt. Commun. 47, 228–290 (1983).
  4. J.-C. Diels, J. J. Fountaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270–1282 (1985).
  5. K. Naganuma, K. Mogi, and H. Yamada, “General method of ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225–1233 (1989).
  6. J. L. A. Chilla and O. E. Martinez, “Direct determination of the amplitude and phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
  7. C. Yan and J.-C. Diels, “Amplitude and phase recording of ultrashort pulses,” J. Opt. Soc. Am. B 8, 1259–1263 (1991).
  8. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
  9. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 18, 1946–1948 (1993).
  10. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
  11. B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 113, 79–84 (1994).
  12. J. K. Rhee, T. S. Sosnowski, A. C. Tien, and T. B. Norris, “Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique,” J. Opt. Soc. Am. B 13, 1780–1785 (1996).
  13. J.-C. Diels, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 1996), Chap. 8.
  14. I. P. Christov, J. Zhou, J. Peatross, A. Rundquist, M. M. Murnane, and H. C. Kapteyn, “Nonadiabatic effects in high-harmonic generation with ultrashort pulses,” Phys. Rev. Lett. 77, 1743–1746 (1996).
  15. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Attosecond pulse generation in the single-cycle regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).
  16. V. T. Platonenko, V. V. Strelkov, G. Ferranti, V. Miceli, and E. Fiordilino, “Control of the spectral width and pulse duration of a single high-order harmonic,” Laser Phys. 6, 1164–1167 (1996).
  17. E. Fiordilino and V. Miceli, “Laser pulse shape effects in harmonic generation from a two-level atom,” J. Mod. Opt. 41, 1415–1426 (1994).
  18. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1993).
  19. B. Kohler, V. V. Yakovlev, Jianwei Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Yijing Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
  20. C. J. Bardeen, Q. Wang, and C. V. Shank, “Selective excitation of vibrational wave packet motion using chirped pulses,” Phys. Rev. Lett. 75, 3410–3413 (1995).
  21. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
  22. J. Fienup, “Improved synthesis and computational methods for computer-generated holograms,” Ph.D. dissertation (Stanford University, Palo Alto, Calif., 1975).
  23. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed. (Cambridge University, New York, 1992), p. 805.
  25. R. W. Gerchberg and W. O. Saxton, Optik 35, 237–246 (1972).
  26. E. M. Hofstetter, “Construction of time-limited functions with specified autocorrelation functions,” IEEE Trans. Inf. Theory IT-10, 119–126 (1964).
  27. Yu. M. Bruck and L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979).
  28. T. R. Crimmins and J. R. Fienup, “Ambiguity of phase retrieval for functions with disconnected support,” J. Opt. Soc. Am. 71, 1026–1028 (1981).
  29. T. R. Crimmins and J. R. Fienup, “Uniqueness of phase retrieval for functions with sufficiently disconnected support,” J. Opt. Soc. Am. 73, 218–221 (1983).
  30. J. R. Fienup, “Reconstruction of an object from the modulus of its fourier transform,” Opt. Lett. 3, 27–29 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited