OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 223–231

Raman-induced redshift of ultrashort mode-locked laser pulses

H. A. Haus, I. Sorokina, and E. Sorokin  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 223-231 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A resonant Raman line is shown to cause a redshift of the pulse spectrum within every pass through the resonator of a mode-locked laser. The filtering action of the mirror reflectivity or any other action that confines the spectrum counterbalances the shift. The net effect is that the center frequency of the pulse spectrum deviates from the center of the filter response. The net shift caused by a set of lines is the sum of the individual shifts. The Raman shift leads to a net gain reduction and thus to a limit on the achievable pulse width. The process is similar to yet different from the well-known soliton carrier frequency shift that is due to the delayed Kerr effect in fibers.

© 1998 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.5650) Nonlinear optics : Raman effect

H. A. Haus, I. Sorokina, and E. Sorokin, "Raman-induced redshift of ultrashort mode-locked laser pulses," J. Opt. Soc. Am. B 15, 223-231 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Gordon, “The soliton self-frequency shift,” Opt. Lett. 11, 664–666 (1986). [CrossRef]
  2. B. E. Lemoff and C. P. J. Barty, “Generation of high-peak-power 20-fs pulses from a regeneratively initiated, self-mode-locked Ti:sapphire laser,” Opt. Lett. 19, 1367–1369 (1992). [CrossRef]
  3. Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, and F. Krausz, “Generation of sub-20 fs mode-locked pulses from Ti:sapphire laser,” Electron. Lett. 28, 1532–1533 (1992). [CrossRef]
  4. A. Kasper and K. T. Witte, “10-fs pulse generation from a unidirectional Kerr-lens mode-locked Ti:sapphire ring laser,” Opt. Lett. 21, 360–362 (1996). [CrossRef] [PubMed]
  5. L. Xu, Ch. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett. 21, 2008–2010 (1996). [CrossRef] [PubMed]
  6. M. J. P. Dymott and A. I. Ferguson, “Self-mode-locked diode-pumped Cr:LiSAF laser producing 34-fs pulses at 42-mW average power,” Opt. Lett. 20, 1157–1159 (1995). [CrossRef] [PubMed]
  7. S. Uemura and K. Miyazaki, “Femtosecond Cr:LiSAF laser pumped by a single diode laser,” Opt. Commun. 138, 330–332 (1997). [CrossRef]
  8. R. Mellisch, N. P. Barry, S. C. W. Hyde, R. Jones, P. M. W. French, and J. R. Taylor, “Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier,” Opt. Lett. 20, 2312–2314 (1995). [CrossRef]
  9. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “Sub-20-fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B (1997). [CrossRef]
  10. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation from prismless KLM Cr:LiSAF and Cr:LiSGaF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716 (1997). [CrossRef]
  11. S. P. S. Porto and R. S. Krishnan, “Raman effect of corundum,” J. Chem. Phys. 47, 1009–1012 (1967). [CrossRef]
  12. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton-self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301–1304 (1988). [CrossRef]
  13. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Eq. (10.26), p. 151.
  14. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983 (1993). [CrossRef]
  15. H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach,” J. Opt. Soc. Am. B 7, 386–392 (1990). [CrossRef]
  16. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: spectrum, gain, angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970). [CrossRef]
  17. W. D. Johnston, Jr., I. P. Kaminov, and J. G. Bergman, Jr., “Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials,” Appl. Phys. Lett. 13, 190–193 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited