OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 289–301

Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules

S. F. Hubbard, R. G. Petschek, K. D. Singer, N. DSidocky, C. Hudson, L. C. Chien, C. C. Henderson, and P. A. Cahill  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 289-301 (1998)

View Full Text Article

Acrobat PDF (467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed a hyper-Rayleigh scattering scheme to measure six scalar invariants of the squared hyperpolarizability tensor β2. Our theoretical approach expresses the rotational invariants of the irreducible β components as scalars, which eliminates the need for difficult frame transformations. We applied our scheme to several conjugated chiral molecules and found that there are significant Kleinman-disallowed pseudotensor contributions to their hyperpolarizability. These components, along with a large optical rotation and the results of quantum-chemical calculations, indicate a handed nonplanar delocalization of the charge-transfer system in such molecules as predicted by quantum-chemical calculations and are expected to lead to macroscopic second-harmonic generation in axially aligned polymer materials. Pseudotensor contributions to the hyperpolarizability in chiral molecules were found to be as large as the vector contribution in p-nitroaniline. We qualitatively investigated the dispersion in the Kleinman-disallowed components and confirmed that these components are smaller at longer wavelengths.

© 1998 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(290.5870) Scattering : Scattering, Rayleigh

S. F. Hubbard, R. G. Petschek, K. D. Singer, N. DSidocky, C. Hudson, L. C. Chien, C. C. Henderson, and P. A. Cahill, "Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules," J. Opt. Soc. Am. B 15, 289-301 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
  2. J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94, 77–105 (1994).
  3. R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14, 681–684 (1965).
  4. E. Hendrickx, C. Dehu, K. Clays, J. L. Bredàs, and A. Persoons, Polymers for Second-Order Nonlinear Optics (American Chemical Society, Washington, D.C., 1994), Chap. 6, p. 601.
  5. S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering,” Opt. Lett. 21, 1774–1776 (1996).
  6. P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
  7. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
  8. O. J. F. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
  9. J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1, 3–18 (1991).
  10. Y. Luo, A. Cesar, and H. Ågren, “The hyperpolarizability of the tricyanomethanide molecular ion in solution,” Chem. Phys. Lett. 252, 389–397 (1996).
  11. T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
  12. M. Joffre, D. Yaron, R. Silbey, and J. Zyss, “Second order optical nonlinearity in octopolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
  13. E. Kelderman, W. A. J. Starmans, J. P. M. Van Duynhoven, W. Verboom, J. F. J. Engersen, D. N. Reinhoudt, T. Verbiest, K. Clays, and A. Persoons, “Triphenylcarbinol derivatives as molecules for second-order nonlinear optics,” Chem. Mater. 6, 412–417 (1993).
  14. E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J. L. Bredàs, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1994).
  15. A. Persoons, K. Clays, M. Kauranen, E. Hendrickx, E. Put, and W. Bijens, “Characterization of nonlinear optical properties by hyper-scattering techniques,” Synth. Met. 67, 31–38 (1994).
  16. P. K. Schmidt and G. W. Rayfield, “Hyper-Rayleigh light scattering from an aqueous suspension of purple membrane,” Appl. Opt. 33, 4286–4292 (1994).
  17. J. Zyss, T. Chauvan, C. Dhenaut, and I. Ledoux, “Harmonic Rayleigh scattering from nonlinear octupolar molecular media: the case of Crystal Violet,” Chem. Phys. 177, 281–296 (1993).
  18. C. Denhaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgauld, and H. Le Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature (London) 374, 339–342 (1995).
  19. J. Zyss, C. Dhenaut, T. Chauvan, and I. Ledoux, “Quadratic nonlinear susceptibility of octupolar chiral ions,” Chem. Phys. Lett. 206, 409–414 (1993).
  20. S. Stadler, R. Deitrich, G. Bourhill, and C. Bräuchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering,” Opt. Lett. 21, 251–253 (1995).
  21. G. J. T. Heesink, A. G. T. Ruiter, N. F. Van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
  22. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962).
  23. M. Kozierowski, “Electric-dipole differential hyper-Rayleigh and hyper-Raman scattering of elliptically polarized light,” Phys. Rev. A 31, 509–510 (1985).
  24. G. Wagniere, “Theoretical investigation of Kleinman symmetry in molecules,” Appl. Phys. B 41, 169–172 (1986).
  25. R. Wortmann, P. Krämer, C. Glania, S. Lebus, and N. Detzer, “Deviations from Kleinman symmetry of the second-order polarizability tensor in molecules with low-lying perpendicular electronic bands,” Chem. Phys. 173, 99–108 (1992).
  26. H. S. Nalwa, T. Watanabe, and S. Miyata, “2-d charge-transfer molecules for second order nlo: off-diagonal orientation,” Adv. Mater. 7, 754–758 (1995).
  27. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138, 1599–1606 (1965).
  28. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16, 792–794 (1966).
  29. W. M. McClain, “Polarization dependence of three-photon phenomena for randomly oriented molecules,” J. Chem. Phys. 67, 2264–2274 (1972).
  30. S. J. Cyvin, J. E. Rauch, and J. C. Decius, “Theory of hyper-Raman effects (nonlinear inelastic light scattering): selection rules and depolarization ratios for the second-order polarizability,” J. Chem. Phys. 43, 4083–4095 (1965).
  31. R. Bersohn, Y. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3198 (1966).
  32. S. Kielich and M. Kozierowski, “Symmetric and antisymmetric second-harmonic elastic light scattering and its angular dependences,” Acta Phys. Pol. A45, 231–251 (1974).
  33. P. D. Maker, “Spectral broadening of elastic second-harmonic light scattering in liquids,” Phys. Rev. A 1, 923–951 (1970).
  34. M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys. 104, 3445–3456 (1995).
  35. G. Wagniere, “The evaluation of three-dimensional rotational averages,” J. Chem. Phys. 76, 473–480 (1982).
  36. J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27, 609–650 (1978).
  37. J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities,” Phys. Rev. B 2, 1091–1098 (1970).
  38. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).
  39. K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk, “Second-order nonlinear optical properties of donor and acceptor substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989).
  40. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, “General atomic and molecular electronic structure system,” J. Comput. Chem. 14, 1347–1363 (1993).
  41. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse compression mechanism in a synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2199–2208 (1995).
  42. S. W. Wong and K. Y. Wong, “Studies of depolarized hyper-Rayleigh scattering of organic molecule,” Opt. Commun. 133, 268–272 (1997).
  43. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  44. J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1433 (1995).
  45. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second-harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8199 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited