OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 318–328

High-electric-field poling of nonlinear optical polymers

Robert Blum, Martin Sprave, Jurgen Sablotny, and Manfred Eich  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 318-328 (1998)

View Full Text Article

Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated electrical conduction phenomena during high-electric-field poling of a standard covalently functionalized DR-1 side-chain polymer. We performed electric current and second-harmonic measurements simultaneously to derive the effective internal field strength. Various metals and transparent indium tin oxide were used as electrodes. Current densities appeared to be interface (electrode) limited, with little dependence on the work function of the metal for the top electrode (Bardeen barrier at the electrode–dielectric interface), whereas for the bottom electrode–dielectric interface a dependence on the work function of the metal was observed. The field dependence of the current density was found to be Schottky charge emission for medium field strengths (EPOL≤100 V/μm), whereas it was dominated by Fowler–Nordheim tunneling at higher poling fields. In the presence of an additional inorganic barrier layer, significant suppression of tunneling was observed, which led to a reduced probability of singular breakdown events and shifted the limit of avalanche breakdown to higher internal effective poling field strengths.

© 1998 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(240.7040) Optics at surfaces : Tunneling

Robert Blum, Martin Sprave, Jurgen Sablotny, and Manfred Eich, "High-electric-field poling of nonlinear optical polymers," J. Opt. Soc. Am. B 15, 318-328 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
  2. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
  3. M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
  4. V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
  5. L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
  6. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
  7. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733 (1989).
  8. H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
  9. S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides,” J. Opt. Soc. Am. B 8, 2311 (1991).
  10. D. Morichère, P.-A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, “Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation,” J. Opt. Soc. Am. B 10, 1894 (1993).
  11. R. A. Hill, A. Knoesen, and M. A. Mortazavi, “Corona poling of nonlinear polymer thin films for electro-optic modulators,” Appl. Phys. Lett. 65, 1733 (1994).
  12. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
  13. S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
  14. M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
  15. W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
  16. K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
  17. A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
  18. M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
  19. F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
  20. M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro-optic polymers,” Appl. Phys. Lett. 69, 2962 (1996); 70, 2056 (1997).
  21. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  22. J. Lindmayer, “Current transient in insulators,” J. Appl. Phys. 36, 196 (1965).
  23. A. K. Jonscher and R. M. Hill, “Electrical conduction in disordered nonmetallic films,” in Physics of Thin Films, G. Hass, M. H. Francombe, and R. W. Hoffmann, eds. (Academic, New York, 1975), Vol. 8, pp. 169–249.
  24. A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
  25. H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
  26. K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
  27. N. F. Mott, “Conduction in non-crystalline systems. I. Localized electronic states in disordered systems,” Philos. Mag. 17, 1259 (1968).
  28. M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
  29. O. L. Curtis, Jr., and J. R. Srour, “The multiple-trapping model and hole transport in SiO2,” J. Appl. Phys. 48, 3819 (1977).
  30. G. M. Sessler, “Physical principles of electrets,” in Electrets, G. Sessler, ed. (Springer-Verlag, Heidelberg, 1980), pp. 13–80.
  31. N. F. Mott, “Conduction in non-crystalline systems. III. Localized states in a pseudogap and near extremities of conduction and valence bands,” Philos. Mag. 19, 835 (1969).
  32. J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71, 717 (1947).
  33. H. K. Henisch, Rectifying Semi-Conductor Contacts (Oxford U. Press, London, 1957).
  34. F. Flores and R. Miranda, “Tuning Schottky barriers by atomic layer control at metal–semiconductor interfaces,” Adv. Mater. 6, 540 (1994).
  35. M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. 19, 162 (1984).
  36. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
  37. J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).
  38. E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77, 388 (1950).
  39. F. W. Schmidlin, “Theory of trap-controlled photoconduction,” Phys. Rev. B 16, 2362 (1977).
  40. H. Bässler, “Charge transport in disordered organic photoconductors,” Phys. Status Solidi B 175, 15 (1993).
  41. J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Phys. Rev. 54, 647 (1938).
  42. R. M. Hill, “Poole–Frenkel-conduction in amorphous solids,” Philos. Mag. 23, 59 (1971).
  43. N. F. Mott, “Conduction in non-crystalline systems. VII. Non-ohmic behaviour and switching,” Philos. Mag. 24, 911 (1971).
  44. J. Antula, “Hot-electron concept for Poole–Frenkel conduction in amorphous dielectric solids,” J. Appl. Phys. 43, 4663 (1972).
  45. A. C. Lilly, Jr., and J. R. McDowell, “High-field conduction in films of Mylar and Teflon,” J. Appl. Phys. 39, 141 (1968).
  46. A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal–semiconductor systems,” J. Appl. Phys. 36, 3212 (1965).
  47. W. Schottky, “Über kalte und warme Elektronenentladungen,” Z. Phys. 14, 63 (1923).
  48. W. Schottky, “Vereinfachte und erweiterte Theorie der Randschichtgleichrichter,” Z. Phys. 118, 539 (1942).
  49. J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron. 12, 695 (1966).
  50. R. B. Schilling and H. Schachter, “Neglecting diffusion in space-charge-limited currents,” J. Appl. Phys. 38, 841 (1967).
  51. P. N. Murgatroyd, “Saturation of reservoir contacts,” Phys. Status Solidi A 6, 217 (1971).
  52. L. Nordheim, “Die Theorie der Elektronenemission der Metalle,” Phys. Z. 30, 177 (1929).
  53. I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75, 1656 (1994).
  54. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
  55. J. van Turnhout, “Thermally stimulated discharge of electrets,” in Electrets, G. Sessler, ed. (Springer-Verlag, Heidelberg, 1980), pp. 81–205.
  56. A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
  57. J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
  58. Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
  59. D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Computational Microelectronics Series (Springer-Verlag, Vienna, 1994).
  60. T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).
  61. Spin-on glass, Accuglass 512, from Allied Signal Inc., Milpitas, Calif.
  62. Obtained from IBM Almaden Research Center, San Jose, Calif.
  63. G. Lengyel, “Schottky emission and conduction in some organic insulating materials,” J. Appl. Phys. 37, 807 (1966).
  64. J. Vanderschueren and A. Linkens, “Nature of transient currents in polymers,” J. Appl. Phys. 49, 4195 (1978).
  65. M. E. Baird, “Determination of dielectric behavior at low frequencies from measurements of anomalous charging and discharging currents,” Rev. Mod. Phys. 40, 219 (1968).
  66. M. Homann and H. Kliem, “Relaxational polarization and charge injection in thin films of silicon nitride,” Microelectron. J. 25, 559 (1994).
  67. G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062 (1977).
  68. H. J. Wintle, “Schottky injection currents in insulators: the effect of space charge on the time dependence,” IEEE Trans. Electr. Insul. 12, 424 (1977).
  69. D. K. Davies, “Field stimulated interfacial electron transfer,” Proc. Inst. Electr. Eng. 128, 153 (1981).
  70. G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
  71. S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
  72. P. W. Atkins, Physical Chemistry (Oxford U. Press, Oxford, 1990).
  73. D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
  74. T. J. Lewis, “The role of electrodes in conduction and breakdown phenomena in solid dielectrics,” IEEE Trans. Electr. Insul. 19, 210 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited