OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 329–337

Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions

A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson  »View Author Affiliations


JOSA B, Vol. 15, Issue 1, pp. 329-337 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000329


View Full Text Article

Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It has been commonly assumed that electrostatic interactions between chromophores that exhibit large second hyperpolarizabilities β can be neglected in estimating electro-optic and second-harmonic coefficients, which can be achieved by electric-field poling of chromophore-containing polymers. Macroscopic optical nonlinearity has been assumed to scale as μβ/molecular weight, where μ is the dipole moment. Synthesis of chromophores with μβ values of the order of 10<sup>−44</sup> esu has led to expectations of electro-optic coefficients for organic materials that substantially exceed those of lithium niobate. Expected values have not been easily realized; thus the utility of the above-mentioned scaling factor or chromophore figure of merit has been brought into question. We demonstrate that macroscopic optical nonlinearities are attenuated at high chromophore loading for chromophores characterized by electrostatic interactions that, at close approach distances, exceed thermal energies (kT) and poling energies (μF), where F is the effective electric field.

© 1998 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Citation
A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, "Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions," J. Opt. Soc. Am. B 15, 329-337 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-1-329


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. P. Agrawal and C. Flytzanis, “Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems,” Chem. Phys. Lett. 44, 366–370 (1976).
  2. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), pp. 1–307.
  3. A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE 682, 2–11 (1986).
  4. J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
  5. J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard III, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser. 601, 45–56 (1995).
  6. I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser. 601, 21–25 (1995), pp. 57–65.
  7. D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
  8. L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
  9. C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE 2527, 150–162 (1995).
  10. C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
  11. M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.
  12. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE 3006, 314–317 (1997).
  13. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
  14. L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493 (1936).
  15. D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE 2527, 32–40 (1995).
  16. C. S. Willand and D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304–1310 (1987).
  17. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
  18. K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE 1147, 233–244 (1989).
  19. H. E. Katz, M. L. Schilling, and G. E. Washington, “Solution-phase dielectric characterization of the 4-amino-4-dicyanovinyl-azobenzene nonlinear-optical chromophore,” J. Opt. Soc. Am. B 7, 309–312 (1990).
  20. T. Watanabe and S. Miyata, “Effect of crystallization process on the second harmonic generation of poly(oxyethylene)/p-nitroaniline systems,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE 1147, 101–107 (1989).
  21. R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE 682, 160–169 (1986).
  22. K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE 2025, 488–498 (1993).
  23. M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).
  24. B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
  25. F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8–26 (1937).
  26. J. N. Isrealachvili, Intermolecular and Surface Forces (Academic, London, 1985).
  27. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976), pp. 1–395.
  28. R. H. Fowler, “A theory of the rotations of molecules in solids and of the dielectric constant of solids and liquids,” Proc. R. Soc. London Ser. A 149, 1–28 (1935).
  29. P. Debye, “Molecular rotation in liquids,” Phys. Z. 36, 100–101 (1935).
  30. A. Piekara, “The existence of intermolecular coupling of the second kind in liquids,” Z. Phys. 108, 395–400 (1938).
  31. A. Piekara, “A theory of electric polarization. Electro-optic Kerr effect and electrical saturation in liquids and solutions,” Proc. R. Soc. London Ser. A 172, 360–383 (1939).
  32. M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
  33. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
  34. Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).
  35. V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
  36. M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE 2527, 218–227 (1995).
  37. S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
  38. C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
  39. M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
  40. S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1, 3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
  41. S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE 2527, 375–383 (1995).
  42. S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
  43. A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
  44. A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE 3005, 65–76 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited