OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 338–350

Modeling relaxation processes in poled electro-optic polymer films

R. D. Dureiko, D. E. Schuele, and K. D. Singer  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 338-350 (1998)

View Full Text Article

Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chielectric spectroscopy, which is frequency-domain electric-field-induced second-harmonic generation, was developed to study the nonlinear optical response near the glass-transition temperature on short time scales. These measurements, along with time-domain second-harmonic generation and time- and frequency-domain dielectric measurements, were used to characterize the decay of poling-induced electro-optic properties of guest–host and side-chain methacrylate polymers that have glass-transition temperatures in the range 90< T<sub>g</sub><125 °C. Time- and frequency-dependent data were fitted with a three-level model. The temperature dependences of the time constants from the polymeric systems were then compared, and a scaling model for predicting useful lifetimes of poled electro-optic media is discussed.

© 1998 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(310.0310) Thin films : Thin films

R. D. Dureiko, D. E. Schuele, and K. D. Singer, "Modeling relaxation processes in poled electro-optic polymer films," J. Opt. Soc. Am. B 15, 338-350 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. A. Lindsay and K. D. Singer, Polymers for Second-Order Nonlinear Optics, ACS Symp. Ser. 601 (1995).
  2. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
  3. R. Lytel, G. F. Lipscomb, J. T. Kenney, and E. S. Binkley, “Large-scale integration of electro-optic polymer waveguides,” in Polymers for Lightwave and Integrated Optics, L. A. Hornack, ed. (Dekker, New York, 1992), pp. 433–472.
  4. G. Meredith, J. VanDusen, and D. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
  5. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
  6. C. Ye, T. J. Marks, J. Yang, and G. K. Wong, “Synthesis of molecular arrays with nonlinear optical-properties—second-harmonic generation by covalently functionalized glassy-polymers,” Macromolecules 20, 2322–2324 (1987).
  7. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second harmonic-generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526–528 (1988).
  8. P. Debye, Polar Molecules (Lancaster, Lancaster, Pa., 1929).
  9. D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals 1, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1987).
  10. H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic-generation in corona poled, doped polymer-films as a function of corona processing,” J. Appl. Phys. 67, 1037–1041 (1990).
  11. C. H. Wang, S. H. Gu, and H. W. Guan, “Polar order and relaxation of second-order nonlinear-optical susceptibility in an electric-field polarized amorphous polymer,” J. Chem. Phys. 99, 5597–5604 (1993).
  12. M. Eich, H. Looser, D. Y. Yoon, R. Twieg, G. C. Bjorklund, and J. C. Baumert, “Second-harmonic generation in poled organic monomeric glasses,” J. Opt. Soc. Am. B 6, 1590–1597 (1989).
  13. C. G. Garton, “The distribution of relaxation times in dielectrics,” Trans. Faraday Soc. XLIIA, 56–60 (1946).
  14. H. Fröhlich, Theory of Dielectric: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1949).
  15. J. R. Macdonald, “Some statistical aspects of relaxation time distributions,” Physica (Utrecht) 28, 485–492 (1962).
  16. J. R. Macdonald, “Restrictions on the form of relaxation time distribution functions for a thermally activated process,” J. Chem. Phys. 36, 345–349 (1962).
  17. J. R. Macdonald, “Transient and temperature response of a distributed, thermally activated system,” J. Appl. Phys. 34, 538–552 (1963).
  18. C. J. Böttcher and P. Bordewijk, Theory of Electronic Polarisation (Elsevier, Amsterdam, 1978), Vol. 2.
  19. H. L. Hampsch, J. M. Torkelson, J. Yang, and G. K. Wong, “Second harmonic-generation in doped glassy polymer-films as a function of physical aging and dopant size,” Polymer Commun. 30, 40–43 (1989).
  20. C. P. J. M. van der Vorst and R. A. P. van Gassel, “Thermal relaxation of poled non-linear optical sidechain polymers: a new, semi-empirical model,” Macromol. Symp. 90, 47–64 (1994).
  21. T. Goodson, and C. H. Wang, “Dipolar orientational relaxation in guest host amorphous polymer probed by second-harmonic generation,” Macromolecules 26, 1837–1840 (1993).
  22. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films,” Macromolecules 23, 3640–3647 (1990).
  23. R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).
  24. G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970).
  25. M. G. Kuzyk, R. C. Moore, and L. A. King, “Second harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64–72 (1990).
  26. K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical-materials,” J. Appl. Phys. 70, 3251–3255 (1991).
  27. A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of nonlinear-optical chromophores in rubbery and glassy-polymers—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” Macromolecules 26, 5943–5953 (1993).
  28. J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. (USA) 83, 848–851 (1986).
  29. K. Weron, “A probabilistic mechanism hidden behind the universal power law for dielectric-relaxation—general relaxation equation,” J. Phys. Condens. Matter 3, 9151–9162 (1991).
  30. M. F. Shlesinger and J. Klafter, “The nature of temporal hierarchies underlying relaxation in disordered systems,” in Fractal in Physics, L. P. Pietronero and E. Tosatti, eds. (North-Holland, Amsterdam, 1986), p. 393–398.
  31. F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with Disperse Red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995).
  32. A. Dhinojwala, G. K. Wong, and J. M. Torkleson, “Rotational reorientation dynamics of Disperse Red-1 in polystyrene—alpha-relaxation dynamics probed by second-harmonic generation and dielectric-relaxation,” J. Chem. Phys. 100, 6046–6054 (1994).
  33. P. Kaatz, P. Pretre, U. Meier, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666–1678 (1996).
  34. J. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
  35. S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second-order nonlinear-optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993).
  36. L. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian-motion of chromophores and electric-field effects in polymer-films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
  37. T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
  38. L. A. Dissado and R. M. Hill, “Non-exponential decay in dielectrics and dynamics of correlated systems,” Nature 279, 685–689 (1979).
  39. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).
  40. K. L. Ngai and C. T. White, “Frequency dependence of dielectric loss in condensed matter,” Phys. Rev. B 20, 2475–2486 (1979).
  41. L. J. Slater, Generalized Hypergeometric Functions (Cambridge U. Press, Cambridge, 1966).
  42. L. J. Slater, Confluent Hypergeometric Functions (Cambridge U. Press, Cambridge, 1960).
  43. A. J. Kovacs, J. M. Hutchinson, and J. J. Aklonis, “Isobaric volume and enthalpy recovery in glasses. I. A critical survey of recent phenomenological approaches,” in The Structure of Non-Crystalline Materials, P. H. Gaskell, ed. (Taylor & Francis, London, 1977), pp. 167–174.
  44. M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. Twieg, W. Volksen, and C. A. Walsh, “Reevaluation of the thermal-stability of optically nonlinear polymeric guest–host systems,” Appl. Phys. Lett. 61, 1626–1628 (1992).
  45. J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961).
  46. M. I. Klinger, Glassy Disordered System: Topology, Atomic Dynamics, and Localized Electron States (Elsevier/North-Holland, Amsterdam, 1989).
  47. J. H. Gibbs and E. A. DiMarzio, “Nature of the glass transition and the glassy state,” J. Chem. Phys. 28, 373–383 (1958).
  48. G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids,” J. Chem. Phys. 43, 139–146 (1965).
  49. G. W. Scherer, “Use of the Adam–Gibbs equation in the analysis of structural relaxation,” J. Am. Ceram. Soc. 67, 504–511 (1984).
  50. A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
  51. O. S. Narayanaswamy, “A model of structural relaxation in glass,” J. Am. Ceram. Soc. 54, 491–498 (1971).
  52. I. M. Hodge and A. R. Berens, “Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling,” Macromolecules 15, 762–770 (1982).
  53. C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Witerman, R. P. Moeller, H. Sasabe, and J. A. Wilder, “Structural relaxation in vitreous materials,” Ann. N.Y. Acad. Sci. 279, 15–35 (1976).
  54. M. A. DeBolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan, “Analysis of structural relaxation in glass using rate heating data,” J. Am. Ceram. Soc. 59, 16–21 (1976).
  55. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
  56. Purchased from IBM Almaden Research Center, San Jose, Calif.
  57. J. A. Cline and W. N. Herman, “Chi-electric relaxation frequency domain chromophore dynamics in nonlinear optical polymers,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) pp. MD39/1–MD39/4.
  58. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
  59. G. T. Boyd, C. V. Francis, J. E. Trend, and D. A. Ender, “Second-harmonic generation as a probe of rotational mobility in poled polymers,” J. Opt. Soc. Am. B 8, 887–894 (1991).
  60. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
  61. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Relaxation in Polymeric Solids (Wiley, London, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited