OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 351–358

Chielectric relaxation: chromophore dynamics in an azo-dye-doped polymer

W. N. Herman and J. A. Cline  »View Author Affiliations


JOSA B, Vol. 15, Issue 1, pp. 351-358 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000351


View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new experimental method for observing chromophore relaxation dynamics in nonlinear optical polymer systems is described. The method is similar to dielectric relaxation measurements, which probe the linear susceptibility χ(1), but this new method is chromophore selective and probes the nonlinear susceptibility χ(2) in the frequency domain, monitoring second-harmonic generation during the application of a strong ac electric field. The out-of-phase component of χ(2) exhibits behavior similar to that of the loss component in dielectric relaxation and is shown to be unaffected by electric-field-induced third-order effects. The relation to dielectric relaxation is discussed, and stretched exponential parameters are extracted for a Disperse-Red-1/poly(methyl methacrylate) guest–host system.

© 1998 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(160.5470) Materials : Polymers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(250.5300) Optoelectronics : Photonic integrated circuits

Citation
W. N. Herman and J. A. Cline, "Chielectric relaxation: chromophore dynamics in an azo-dye-doped polymer," J. Opt. Soc. Am. B 15, 351-358 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-1-351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987). [CrossRef]
  2. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials ACS Symp. Ser. 233, (1983).
  3. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vols. 1 and 2.
  4. G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics, ACS Symp. Ser. 601, (1995).
  5. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE 3006, 314 (1997). [CrossRef]
  6. H. L. Hampsch and J. M. Torkelson, “Second harmonic generation in corona-poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990). [CrossRef]
  7. L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987 (1994). [CrossRef]
  8. P. Kaatz, P. Pretre, U. Meier, U. Stalder, C. Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, and F. Lehr, “Relaxation processes in nonlinear optical polyimide side-chain polymers,” Macromolecules 29, 1666 (1996). [CrossRef]
  9. M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer,” J. Appl. Phys. 66, 2559 (1989). [CrossRef]
  10. D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Beck, J. D. Swalen, R. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011 (1991). [CrossRef]
  11. W. Kohler, D. R. Robello, C. S. Willand, and D. J. Williams, “Dielectric relaxation study of some novel polymers for nonlinear optics,” Macromolecules 24, 4589 (1991). [CrossRef]
  12. I. Teraoka, D. Jungbauer, B. Reck, D. Y. Yoon, R. Twieg, and C. G. Willson, “Stability of nonlinear-optical characteristics and dielectric relaxations of poled amorphous polymers with main-chain chromophores,” J. Appl. Phys. 69, 2568 (1991). [CrossRef]
  13. W. Kohler, D. R. Robello, P. T. Dao, C. S. Willand, and D. J. Williams, “Second-harmonic generation and thermally stimulated current measurements: a study of some novel polymers for nonlinear optics,” J. Chem. Phys. 93, 9157 (1990). [CrossRef]
  14. K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251 (1991). [CrossRef]
  15. F. Ghebremichael and H. S. Lackritz, “Electro-optic and second harmonic generation studies of dye-doped polymers,” in Organic Thin Films for Photonic Applications, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 458.
  16. S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation of the second order nonlinear optical susceptibility in a guest–host polymer,” Appl. Phys. Lett. 63, 2059 (1993). [CrossRef]
  17. J. A. Cline and W. N. Herman, “Chielectric relaxation: frequency domain chromophore dynamics in nonlinear optical polymers,” in Organic Thin Films for Photonic Applications, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 206.
  18. W. N. Herman and J. A. Cline, “Chielectric relaxation and electrically-induced strain effects,” presented at the National Science Foundation/Office of Naval Research Third International Conference on Organic Nonlinear Optics, Marco Island, Fla., December 16–20, 1996.
  19. R. D. Dureiko, D. E. Schuele, and K. D. Singer, “Modeling relaxation processes in poled polymer films,” presented at the National Science Foundation/Office of Naval Research Third International Conference on Organic Nonlinear Optics, Marco Island, Fla., December 16–20, 1996. See also the same authors, “Modeling relaxation processes in poled electro-optic polymer films,” J. Opt. Soc. Am. B 15, 338 (1998). [CrossRef]
  20. T. Sugihara, H. Haga, and S. Yamamoto, “Electric field response of second order optical nonlinearity in dye doped poled polymer,” Appl. Phys. Lett. 68, 144 (1996). [CrossRef]
  21. M. G. Kuzyk, R. C. Moore, and L. A. King, “Second-harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64 (1990). [CrossRef]
  22. F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with disperse red 1 azo dye,” J. Appl. Phys. 77, 2895 (1995). [CrossRef]
  23. G. T. Boyd, C. V. Francis, J. E. Trend, and D. A. Ender, “Second-harmonic generation as a probe of rotational mobility in poled polymers,” J. Opt. Soc. Am. B 8, 887 (1991). [CrossRef]
  24. A. Dhinojwala, G. K. Wong, and J. M. Torkelson, “Rotational reorientation dynamics of nonlinear optical chromophores in rubbery and glassy polymers: α-relaxation dynamics probed by second-harmonic generation and dielectric relaxation,” Macromolecules 26, 5943 (1993). [CrossRef]
  25. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142 (1991). [CrossRef]
  26. A. R. Blythe, Electrical Properties of Polymers (Cambridge U. Press, Cambridge, 1979).
  27. D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1987), Vol. 1, Chap. II-7.
  28. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977 (1962). [CrossRef]
  29. M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro-optic polymers,” Appl. Phys. Lett. 69, 2962 (1996). [CrossRef]
  30. R. Kohlrausch, “Theorie des elecktrischen in der Leidner Flashe,” Pogg Ann. Phys. 91, 179 (1854).
  31. G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80 (1970). [CrossRef]
  32. A. Dhinojwala, G. K. Wong, and J. M. Torkelson, “Relative contribution of the electric-field induced third-order effect to second-harmonic generation in poled, doped, amorphous polymers,” J. Opt. Soc. Am. B 11, 1549 (1994). [CrossRef]
  33. For a discussion of some relaxation mechanisms giving rise to the stretched exponential, see J. Klafter and M. F. Shlesinger, “On the relationship of three theories of relaxation in disordered systems,” Proc. Natl. Acad. Sci. USA 83, 848 (1986). [CrossRef]
  34. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967).
  35. The negative is used because of the definition of the complex permittivity: ε*=ε−iε.
  36. C. P. Lindsey and G. D. Patterson, “Detailed comparison of the Williams–Watts and Cole–Davidson functions,” J. Chem. Phys. 73, 3348 (1980). [CrossRef]
  37. M. L. Williams, R. F. Landel, and J. P. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701 (1955). [CrossRef]
  38. D. Lei, J. Runt, A. Safari, and R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797 (1987). [CrossRef]
  39. H. J. Winkelhahn, H. H. Winter, and D. Neher, “Piezoelectricity and electrostriction of dye-doped polymer electrets,” Appl. Phys. Lett. 64, 1347 (1994). [CrossRef]
  40. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842 (1990). [CrossRef]
  41. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited