OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 359–368

Optical properties of nonlinear optical polymers: a method for calculation

Ph. Prêtre, L.-M. Wu, A. Knoesen, and J. D. Swalen  »View Author Affiliations


JOSA B, Vol. 15, Issue 1, pp. 359-368 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000359


View Full Text Article

Acrobat PDF (294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Methods for calculating the optical properties as a function of wavelength for second-order nonlinear optical polymers are presented. By combining the optical properties of the individual components, that is, those of the polymer and those of the chromophore, one can determine the real and the imaginary parts of the index of refraction and the second hyperpolarizability as a function of wavelength for a composite polymer, for either a guest–host or a side-chain system. These properties are important for characterizing and applying nonlinear optical polymers to devices. The methods allow for an accuracy in index of 3%, if the wavelength range includes the main absorption band (with absorption maximum at λmax) of the chromophore, and of 0.2% for wavelengths 400 nm and more to the long-wavelength side of λmax. In addition, if the index of the composite polymer is known at one specific wavelength on the long-wavelength side of λmax, the dispersion in the index in this wavelength range can be predicted to within 0.1%.

© 1998 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.2100) Materials : Electro-optical materials
(160.4330) Materials : Nonlinear optical materials
(160.5470) Materials : Polymers
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(310.0310) Thin films : Thin films

Citation
Ph. Prêtre, L.-M. Wu, A. Knoesen, and J. D. Swalen, "Optical properties of nonlinear optical polymers: a method for calculation," J. Opt. Soc. Am. B 15, 359-368 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-1-359


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. J. Twieg and C. W. Dirk, “Design, properties and applications of nonlinear optical chromophores,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Amsterdam, 1996), Chap. 2, pp. 45–136.
  2. R. D. Miller, “Poled polymers for χ(2) applications,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Amsterdam, 1996), Chap. 8, pp. 329–456.
  3. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10,631 (1991).
  4. D. M. Burland, R. D. Miller, O. Reiser, R. J. Twieg, and C. A. Walsh, J. Appl. Phys. 71, 410 (1992).
  5. C. R. Moylan, S. A. Swanson, C. A. Walsh, J. I. Thackara, R. J. Twieg, R. D. Miller, V. Y. Lee, “From electric field-induced second harmonic generation (EFISH) to electro-optic measurements of nonlinear chromophores,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE 2025, 192 (1993).
  6. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 155.
  7. W. J. Welsh, “Densities of amorphous and crystalline polymers” in Physical Properties of Polymers Handbook, J. E. Mark, ed. (American Institute of Physics, New York, 1996), pp. 401–407.
  8. D. R. Lide, ed., Handbook of Chemistry and Physics (CRC, Cleveland, Ohio, 1990).
  9. D. W. van Krevelen and P. J. Hoftyzer, Properties of Polymers, Their Estimation and Correlation with Chemical Structures (Elsevier, Amsterdam, 1976).
  10. J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, IBM J. Res. Dev. 21, 168 (1977).
  11. J. D. Swalen, J. Molec. Electron. 2, 155 (1986).
  12. R. Azzam and W. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  13. S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves in Communications Electronics (Wiley, New York, 1965), p. 335.
  14. F. W. King, J. Opt. Soc. Am. 68, 7 (1978).
  15. W. E. Press, B. R. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes (Cambridge U. Press, Cambridge, 1989).
  16. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).
  17. R. H. Page, M. C. Jurich, B. Reck, A. Den, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, J. Opt. Soc. Am. B 7, 1239 (1990).
  18. Data sheet available from Dan Dawson, IBM Almaden Research Center, 650 Harry Road, San Jose, Calif. 95120 [tel. (408) 927–1617].
  19. R. C. Raine, in American Institute of Physics Handbook, D. E. Gray, ed. (McGraw-Hill, New York, 1950), pp. 6–93 and 6–94.
  20. T. Ishigure, E. Nihei, and Y. Koike, Appl. Opt. 35, 2048 (1996).
  21. Ch. Bosshard, K. Sutter, Ph. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, in Organic Nonlinear Optical Materials, A. F. Garito and F. Kajzar, eds., Vol. 1 of Advances in Nonlinear Optics (Gordon & Breach, Basel, 1995), p. 116; G. Knöpfle, Ch. Bosshard, R. Schlesser, and P. Günter, IEEE J. Quantum Electron. 30, 1303 (1994); F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, Appl. Phys. Lett. 69, 13 (1996).
  22. This procedure is not strictly correct. It assumes that adding the chromophore results in no index change in the solution and consequently no change in transmission coefficients at the cell–solution boundaries. At the low concentrations used in these types of measurement, however, such a change (Δn≈10−5) will have no influence on the result.
  23. C. R. Moylan, R. J. Twieg, V. Y. Lee, S. A. Swanson, K. M. Betterton, and R. D. Miller, J. Am. Chem. Soc. 115, 12599 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited