OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 379–392

Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities

Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 379-392 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have used resonant reflection mode Fabry–Perot microcavities (RFPM’s) to determine linear optical and electro-optical properties of poled nonlinear optical polymers (NLP’s). Measured reflectances from angular scans of RFPM’s have been analyzed with an electromagnetic plane-wave multilayer analysis that took into account the anisotropic nature of the NLP layer. We have numerically investigated the mutual dependence of refractive indices and layer thickness and the accuracy of the results obtained. As an illustration of this characterization technique, the refractive indices of a 10 mol. % Disperse Red 1/poly(methyl methacrylate) side-chain NLP have been determined to within ±0.005, the NLP layer thicknesses to within 1%, and electro-optic coefficients to within 5%. We optimized RFPM structures for measurements at the wavelength λ=430 nm by changing the electrode metal from gold to aluminum. Using a guest–host NLP, 5 wt. % diphenyl-tricyanovinyl-aniline in poly(methyl methacrylate), we show that the method is capable of measuring electrorefraction and electroabsorption as well as a converse piezoelectric contribution. We show that a NLP decal deposition technique is particularly well suited to fabrication of these RFPM’s.

© 1998 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(160.2100) Materials : Electro-optical materials
(160.5470) Materials : Polymers
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, "Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry Perot microcavities," J. Opt. Soc. Am. B 15, 379-392 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt. 29, 2839 (1990). [CrossRef] [PubMed]
  2. C. C. Teng and T. H. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990). [CrossRef]
  3. K. Clays and J. S. Schildkraut, “Dispersion of the complex electro-optic coefficient and electrochromic effects in poled polymer films,” J. Opt. Soc. Am. B 9, 2274 (1992). [CrossRef]
  4. F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9 (1995). [CrossRef]
  5. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988). [CrossRef]
  6. F. S. Qiu, K. Misawa, X. M. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer films with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605 (1994). [CrossRef]
  7. L. M. Hayden, G. F. Sauter, F. R. Ore, P. L. Pasillas, J. M. Hoover, G. A. Lindsay, and R. A. Henry, “Second-order nonlinear optical measurements in guest-host and side-chain polymers,” J. Appl. Phys. 68, 456 (1990). [CrossRef]
  8. Y. Lévy, M. Dumont, E. Chastaing, P. Robin, P.-A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Nonlinear Opt. 4, 1 (1993).
  9. P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films 242, 132 (1994). [CrossRef]
  10. S. H. Han and J. W. Wu, “Single-beam polarization interferometry measurement of the linear electro-optic effect in poled polymer films with a reflection configuration,” J. Opt. Soc. Am. B 14, 1131 (1997). [CrossRef]
  11. S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides,” J. Opt. Soc. Am. B 8, 2311 (1991). [CrossRef]
  12. J. D. Swalen and J. I. Thackara, “Electro-optic measurements of poled polymeric films,” Nonlinear Opt. 10, 371 (1995).
  13. C. A. Eldering, S. T. Kowel, and A. Knoesen, “Electrically induced transmissivity modulation in polymeric thin film Fabry–Perot etalons,” Appl. Opt. 28, 4442 (1989). [CrossRef] [PubMed]
  14. H. Uchiki and T. Kobayashi, “New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymers,” J. Appl. Phys. 64, 2625 (1988). [CrossRef]
  15. R. Meyrueix, J. P. Lecomte, and G. Tapolsky, “A Fabry– Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201 (1991).
  16. C. A. Eldering, A. Knoesen, and S. T. Kowel, “Use of Fabry–Perot devices for the characterization of polymeric electro-optic films,” J. Appl. Phys. 69, 3676 (1991). [CrossRef]
  17. D. R. Yankelevich, R. A. Hill, A. Knoesen, M. A. Mortazavi, H. N. Yoon, and S. T. Kowel, “Polymeric modulator for high frequency optical interconnects,” IEEE Photonics Technol. Lett. 6, 386 (1994). [CrossRef]
  18. N. F. O’Brien, V. Dominic, and S. Caracci, “Electro-refraction and electro-absorption in poled polymer Fabry–Perot étalons,” J. Appl. Phys. 79, 7493 (1996). [CrossRef]
  19. K. D. Singer, J. E. Sohn, and S. L. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986). [CrossRef]
  20. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733 (1989). [CrossRef]
  21. R. A. Hill, A. Knoesen, and M. A. Mortazavi, “Corona poling of nonlinear polymer thin films for electro-optic modulators,” Appl. Phys. Lett. 65, 1733 (1994). [CrossRef]
  22. G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462 (1993). [CrossRef]
  23. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  24. See, e.g., R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987); P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1991).
  25. P. Rouard, “Études des propriétés optiques des lames métalliques très minces,” Ann. Phys. (Paris) 7, 291 (1937).
  26. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502 (1972). [CrossRef]
  27. A. Knoesen, “Simple approach to reflectance analysis of birefringent stratified films,” Appl. Opt. 30, 4017 (1991). [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  29. F. Wooten, Optical Properties of Solids (Academic, San Diego, Calif., 1972).
  30. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).
  31. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes–The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).
  32. In the error analysis, fitted parameters from the actual experiment (Fig. 8) are used as surrogates for the true parameters. Computer-generated random numbers within the specified error of the data, σmin, are used to simulate many (in our case 200) synthetic data sets. For each of these sets, best-fit parameters are evaluated to yield their distribution around the surrogate true parameters (algorithm available on PROFIT software from Quantum Soft, Zurich).
  33. D. Morichere, P.-A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, “Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation,” J. Opt. Soc. Am. B 10, 1894 (1993). [CrossRef]
  34. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys. 74, 1869 (1994). [CrossRef]
  35. C. Heldmann, L. Brombacher, D. Neher, and M. Graf, “Dispersion of the electro-optical response in poled polymer films determined by Stark spectroscopy,” Thin Solid Films 261, 241 (1995). [CrossRef]
  36. A. Knoesen, N. E. Molau, D. R. Yankelevich, M. A. Mortazavi, and A. Dienes, “Corona-poled nonlinear polymeric films: in situ electric field measurement, characterization and ultrashort-pulse applications,” Int. J. Nonlinear Opt. Phys. 1, 73 (1992). [CrossRef]
  37. S. A. Hamilton, D. R. Yankelevich, A. Knoesen, R. T. Weverka, R. A. Hill, and G. C. Bjorklund, “Polymer in-line fiber modulators for broadband radio-frequency optical links,” J. Opt. Soc. Am. B (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited