OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 401–413

Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes

Zouheir Sekkat, Philippe Prêtre, André Knoesen, Willie Volksen, Victor Y. Lee, Robert D. Miller, Jonathan Wood, and Wolfgang Knoll  »View Author Affiliations


JOSA B, Vol. 15, Issue 1, pp. 401-413 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000401


View Full Text Article

Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on light-induced linear and second- and third-order nonlinear optical effects in high-glass-transition-temperature (Tg) photosensitive nonlinear optical azo polyimides. We present evidence of light-induced orientation of azo chromophores at room temperature in very high-Tg polyimides (Tg up to 350 °C) even though the chromophore is firmly embedded into the polymer backbone. We show that the isomerization reaction and the light-induced polar and nonpolar orientation depend on the molecular structure of the unit building blocks of the polymer. The mechanism of the photoassisted poling process is clarified, and it is shown how the linear and second- and third-order nonlinear optical effects can be controlled by light.

© 1998 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

Citation
Zouheir Sekkat, Philippe Prêtre, André Knoesen, Willie Volksen, Victor Y. Lee, Robert D. Miller, Jonathan Wood, and Wolfgang Knoll, "Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes," J. Opt. Soc. Am. B 15, 401-413 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-1-401


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. M. Bowden and J. Haus, Feature on Nonlinear Optical Properties of Materials, J. Opt. Soc. Am. B 6, 561–847 (1989), and references therein..
  2. D. M. Burland, ed., special issue on optical nonlinearities in chemistry, Chem. Rev. 94, 1–278 (1994), and references therein.
  3. Z. Sekkat and W. Knoll, “Photoreactive organic thin films in the light of bound electromagnetic waves,” in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bunau, eds. (Wiley, New York, 1997), Vol. 22, pp. 117–195; “Photosensitive organized organic films in the light of bound electromagnetic waves,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., Proc. SPIE 2998, 164 (1997).
  4. Z. Sekkat, “Création d’anisotropie et d’effets non linéaires du second ordre par photoisomérisation de dérivés de l’azobenzène dans des films de polymères,” Ph.D. dissertation (Paris-Sud University, Orsay, France, 1992); Z. Sekkat and M. Dumont, “Photoassisted poling of azo dyes doped polymeric films at room temperature,” Appl. Phys. B 54, 486 (1992); “Poling of polymer films by photoisomerization of azo dye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 2, 359 (1992).
  5. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second harmonic generation in azo dye polymers,” Opt. Lett. 12, 941 (1993).
  6. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993); “Dynamical study of photoinduced anisotropy and orientational relaxation of azo dyes in polymeric films. Poling at room temperature,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE 1774, 188 (1992).
  7. S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403 (1993); “Azo-polymers for reversible optical storage. 2. Poly-(4((2-(acryloyloxy)ethyl)ethylamino)-2-chloro-4-nitro- azobenzene,” Macromolecules 25, 5531 (1992).
  8. D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar, and S. K. Tripathy, “Polarized laser induced holographic surface relief gratings on polymer films,” Macromolecules 28, 8835 (1995).
  9. Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefrengence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
  10. T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
  11. M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
  12. M. Büchel, Z. Sekkat, S. Paul, B. Weichart, H. Menzel, and W. Knoll, “Langmuir–Blodgett–Kuhn multilayers of polyglutamates with azobenzene moities: investigations of photoinduced changes in the optical properties and structure of the films,” Langmuir 11, 4460 (1995).
  13. H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, F. J. Rabeck, ed. (CRC, Boca Raton, Fla., 1990), Vol. II, Chap. 4, pp. 119–141. This paper contains a large bibliography on photoisomerization.
  14. Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “A smart ultrathin photochromic layer,” Langmuir 11, 2856 (1995).
  15. Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the trans⇒cis photoisomerization,” J. Phys. Chem. 99, 17226 (1995).
  16. Z. Sekkat, J. Wood, E. F. Aust, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13, 1713 (1996).
  17. C. D. Eisenbach, “Relation between photochromism and free volume theory in bulk polymers,” Ber. Bunsenges. Phys. Chem. 84, 680 (1980).
  18. N. Böhm, A. Materny, W. Kiefer, H. Steins, M. M. Müller, and G. Schottner, “Spectroscopic investigation of the thermal cis–trans isomerization of Disperse Red 1 in hybrid polymers,” Macromolecules 29, 2599 (1996).
  19. Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855 (1995).
  20. Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
  21. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, “Light-induced orientation in azo-polyimide polymers 325 °C below the glass transition temperature,” J. Opt. Soc. Am. B 14, 829 (1997).
  22. Z. Sekkat, A. Knoesen, V. Y. Lee, and R. D. Miller, “Observation of reversible photochemical blowout of the third-order molecular hyperpolarizability of push–pull azo dye in high glass transition temperature polyimides,” J. Phys. Chem. B 101, 4733 (1997).
  23. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
  24. R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Twieg, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symp. Ser. 601, 130–146 (1995).
  25. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer dye films oriented by corona onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733 (1989).
  26. A. Knoesen, N. E. Molau, D. R. Yankelevich, and M. A. Mortazavi, “Corona poled nonlinear polymeric films: in situ electric field measurement, characterization and ultrashort-pulse applications,” J. Nonlinear Opt. Phys. Mater. 1, 73 (1991).
  27. R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in Disperse Red 1-doped and-functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
  28. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
  29. S. P. Palto, L. M. Blinov, S. G. Yudin, G. Grewer, M. Schönhoff, and M. Lösche, “Photoinduced optical anisotropy in organic molecular films controlled by an electric field,” Chem. Phys. Lett. 202, 308 (1993).
  30. H. Anneser, F. Feiner, A. Petri, C. Bräuchel, H. Leigeber, H. P. Weitzel, F. H. Kreuzer, O. Haak, and P. Boldt, “Photoinduced generation of noncentrosymmetric structures in glassy liquid crystalline polysiloxanes for second harmonic generation,” Adv. Mater. 5, 556 (1993).
  31. P. M. Blanchard and G. R. Mitchell, “A comparison of photoinduced poling and thermal poling of azo-dye-doped polymer films for second order nonlinear applications,” Appl. Phys. Lett. 63, 2038 (1993).
  32. S. Ylmaz, S. Bauer, and R. Gerhard-Multhaupt, “Photothermal poling of nonlinear optical films,” Appl. Phys. Lett. 64, 2770 (1994).
  33. W. Haase, S. Grossmann, S. Saal, T. Weyrauch, and L. M. Blinov, “Efficiency of photoassisted poling of azobenzene, stilbene and biphenyl dyes as studied by Stark spectroscopy,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper PD5–1.
  34. R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156 (1995).
  35. L. R. Dalton, A. W. Harper, J. Zhu, W. H. Steier, R. Salovey, J. Wu, and U. Efron, “Ultrastructure synthesis of special architectures for photonic applications: high frequency electro-optic modulators and high density optical memories,” in Optical and Photonic Applications of Electroactive and Conducting Polymers, S. C. Yang and P. Chandrasekhar, eds., Proc. SPIE 2528, 106 (1995).
  36. J. Chauvin, K. Nakatani, and J. A. Delaire, “Photoassisted poling versus thermal poling in copolyimides for second-order nonlinear optics,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., Proc. SPIE 2998, 205 (1997).
  37. R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, P. M. Lindquist, C. R. Moylan, R. J. Twieg, J. I. Thackara, T. Verbiest, Z. Sekkat, J. Wood, E. F. Aust, and W. Knoll, “High temperature NLO chromophores and polymers,” in Polymers for Advanced Optical Applications, K. H. Wynne and A. S. Jenekhe, eds., ACS Symp. Ser. (to be published).
  38. I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. Moore, “Femtosecond time resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
  39. B. F. Levine and C. G. Beteha, “Second and third order hyperpolarizabilities of organic molecules,” J. Phys. Chem. 63, 2666 (1975).
  40. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10, 631 (1991).
  41. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842 (1990).
  42. M. Amano and T. Kaino, “Third-order nonlinear optical properties of azo dye attached polymers,” Chem. Phys. Lett. 170, 352 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited