OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 421–425

Thermally poled silicate thin films with large second-harmonic generation

O. Sugihara, M. Nakanishi, H. Fujimura, C. Egami, and N. Okamoto  »View Author Affiliations


JOSA B, Vol. 15, Issue 1, pp. 421-425 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000421


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ge- and Ti-doped silica thin films were prepared upon various substrates by solgel processing and rf sputtering. Large second-harmonic generation was measured from thermally poled thin-film samples. The origin of nonlinearity and its distribution from thermally poled silicate thin films were investigated. Moreover, we measured the stability of the nonlinearity of a rf-sputtered germanosilicate thin film upon a silica glass substrate against heat and intense laser light sufficient for the fabrication of waveguide-type nonlinear optical devices.

© 1998 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(190.0190) Nonlinear optics : Nonlinear optics
(310.0310) Thin films : Thin films

Citation
O. Sugihara, M. Nakanishi, H. Fujimura, C. Egami, and N. Okamoto, "Thermally poled silicate thin films with large second-harmonic generation," J. Opt. Soc. Am. B 15, 421-425 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-1-421


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991). [CrossRef] [PubMed]
  2. A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60, 2853–2855 (1992). [CrossRef]
  3. R. A. Myers, S. R. J. Brueck, and R. P. Tumminelli, “Stable second-order nonlinearity in SiO2-based waveguides on Si using temperature/electric-field poling,” in Doped Fiber Devices and Systems, M. J. Digonnet, ed., Proc. SPIE 2289, 158–166 (1994). [CrossRef]
  4. S. Horinouchi, H. Imai, G. J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films,” Appl. Phys. Lett. 68, 3552–3554 (1996). [CrossRef]
  5. O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996). [CrossRef]
  6. H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993). [CrossRef]
  7. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18, 693–695 (1993). [CrossRef] [PubMed]
  8. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993). [CrossRef] [PubMed]
  9. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994). [CrossRef]
  10. P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110, 611–614 (1994). [CrossRef]
  11. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, “Phase-matched second-harmonic generation by periodic poling of fused silica,” Appl. Phys. Lett. 64, 1332–1334 (1994). [CrossRef]
  12. K. Tanaka, K. Kashima, K. Hirano, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation of optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, 173–174 (1995). [CrossRef]
  13. K. Tanaka, K. Kashima, K. Hirano, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995). [CrossRef]
  14. L. J. Henry, “Correlation of Ge E defect sites with second-harmonic generation in poled high-water fused silica,” Opt. Lett. 20, 1592–1594 (1995). [CrossRef] [PubMed]
  15. L. J. Henry, A. D. DeVilbiss, and T. E. Tsai, “Effect of preannealing on the level of second-harmonic generation and defect sites achieved in poled low-water fused silica,” J. Opt. Soc. Am. B 12, 2037–2045 (1995). [CrossRef]
  16. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468–470 (1996). [CrossRef] [PubMed]
  17. P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19, 701–703 (1994). [CrossRef] [PubMed]
  18. P. G. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers,” Electron. Lett. 30, 1345–1346 (1994). [CrossRef]
  19. T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31, 573–574 (1995). [CrossRef]
  20. A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Second-order optical nonlinearity in corona-poled glass films,” J. Appl. Phys. 74, 531–535 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited